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This chapter describes data from an ensemble of eleven variants 

of the Met Office Regional Climate Model (HadRM3), run from 

1950–2099 and used to dynamically downscale global climate 

model (GCM) results as part of the UKCP09 methodology. The 

daily RCM time series are not included as a UKCP09 product, 

and are therefore not accessible via the User Interface. However, 

RCM daily data may have advantages over that from the UKCP09 

Weather Generator for some impacts studies, and is the only 

25 km resolution data available over the seas around the UK, so 

has therefore been made available via the Climate Impacts LINK 

project. We describe here the RCM data, the advantages it may 

have for some users, and also its limitations — the main one being 

that it does not cover such a wide range of uncertainty as the 

UKCP09 probabilistic projections. 

5.1 Regional climate models

A regional climate model contains the same representations of atmospheric 
dynamical and physical processes as in a global model. It is run at a higher 
horizontal resolution (in our case 25 km) but over a sub-global domain (typically 
5000 km square), and is driven at the boundary of the domain by time series of 
variables (such as temperature and winds) saved from a GCM projection. Sea 
surface temperatures and sea-ice extents are also prescribed from the GCM, since 
HadRM3 (like most RCMs) does not include an interactive ocean component. The 
purpose of RCMs is to provide a high resolution climate projection consistent 
with its driving GCM projection at spatial scales skilfully resolved by the latter, 
but adding realistic detail at finer scales. This is the downscaling process referred 
to above. The advantages of projections from RCMs over those from GCMs are:

5 Projections from the ensemble of 
regional climate models
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Figure 5.1: The distribution of winter 
precipitation over Britain (bottom 
right map) for 1961–2000, compared to 
simulations for the same period from a 
GCM (top left), and from two versions of 
the corresponding RCM at 50 and 25 km 
resolution, both driven with boundary 
conditions derived from analyses of 
observations. The GCM (inevitably) fails 
to resolve the observed spatial detail, 
whereas the RCM simulations show better 
agreement with increasing resolution.

•	 RCMs simulate spatial contrasts in time-averaged climate at a scale much 
smaller than that of the driving GCM, in particular where there are significant 
regional influences arising from surface features such as mountains and 
coastlines (see Figure 5.1).

•	 The higher resolution of RCMs also allows improved representation of climate 
variability, particularly aspects associated with small scale meteorological 
processes. As a result, they can provide skilful (though not perfect) projections 
of regional climate extremes, such as localised intense precipitation events, 
which cannot be captured in GCMs. 

•	 The higher resolution of RCMs allows small islands to be explicitly represented 
in the model. 

•	 While RCM projections are designed to be consistent with their driving GCM 
projections at large scales, some types of climate impact, such as changes in 
river flow, are likely to be so strongly dependent on the fine scale detail that 
the use of downscaling, either based on RCM data or a statistical method, is 
essential for the generation of a credible assessment of future changes. 

GCM 300 km RCM 50 Km

RCM 25 km Met Office Observed 5 km

1 2 3 5 7 10 1 2 3 5 7 10
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General guidelines for applying RCM data can be seen in a report from the IPCC 
Task Group on Climate Impacts Assessments (Mearns et al. 2003). A key caveat is 
that while RCMs are now well established as skilful and sophisticated downscaling 
tools, they inevitably inherit all the uncertainties in large scale aspects of climate 
change present in their driving GCM simulations (see Annex 2), so the enhanced 
detail in their projections should not be taken to imply higher accuracy (see also 
Annexes 3 and 6). The same caveat applies to fine scale projections derived from 
the UKCP09 Weather Generator (see further discussion below). 

5.2 RCM experiments 

As mentioned above, and described in more detail in Chapter 3, transient (that 
is, continuous from 1950 to 2099) projections from GCM experiments were used 
as boundary conditions to drive transient regional climate model experiments. 
Only the Medium emissions scenario was used. Each RCM variant used parameter 
settings selected to be consistent with those used in the relevant driving GCM 
variant. In 11 RCM ensemble members this experimental design produced 
physically plausible simulations of detailed climate variability and change 
over the UK. In the case of an additional six ensemble members, however, the 
RCM simulations were found to be deficient in their simulations of storms and 
precipitation, because one of the parameter perturbations employed in the 
RCM failed to produce an impact consistent with that found in the driving GCM 
projections (details in Section 3.2.11). These members were therefore not used in 
the downscaling procedure for UKCP09, which was based on the remaining 11 
RCM variants. 

Daily data from 1950 to 2099 has been archived from each of these 11 variants, 
for a large number of variables (at the surface and at levels in the atmosphere) 
for 25 km grid squares over the domain shown in Chapter 3, Figure 3.8. Following 
interest from the user community, it was agreed to make this data available. This 
will be done via the Climate Impacts LINK project (http://badc.nerc.ac.uk/data/
link), a Defra-funded activity operated by the British Atmospheric Data Centre, 
which allows access for research to a range of data from model experiments 
undertaken at the Met Office. Data accessed via LINK is not accompanied by 
extensive guidance. 

Data from the RCM ensemble is also available as monthly and seasonal means. 
The RCM data can be used to create projections of climate change, by differencing 
averages for a future period from a reference period. This operation cannot be 
performed using the LINK website, but can be done offline once the data has 
been downloaded. Information on the use of this data is available in the UKCP09 
User Guidance.

5.3 Advantages and disadvantages of data from the RCM 
ensemble

As described in the companion UKCP09 report Projections of future daily climate 
for the UK from the Weather Generator, daily data for future decades is also 
available from the Weather Generator, which is part of the UKCP09 projections. 
Why, then, should there be interest in using RCM data? Some reasons are:

1. The daily data from the 25 km model squares is coherent both spatially 
and temporally, in the sense that it arises from a model which produces 
dynamically and physically consistent simulations of the passage over the 
UK of a sequence of atmospheric weather systems. This means, for example, 
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that daily data from any number of squares (contiguous or otherwise) can 
simply be spatially aggregated by the user to form a physically plausible area 
average over any desired region. This could be, for example, a river basin or 
administrative region — although such averages are not provided as products. 
This is not the case for the output from the UKCP09 Weather Generator, which 
is designed to produce daily time series which are temporally consistent at 
individual locations, but not to produce daily time series which are physically 
coherent over a larger region.

2. It follows from point (1) that temporal sequences of, for example, daily 
temperature and precipitation over any set of 25 km squares can be used to 
study the impacts of the evolution of these variables when spatial consistency 
is required, for example when modelling flow in large river catchments. 

3. Changes in long term averages of key variables are fed into the Weather 
Generator, which then generates characteristics of daily sequences, using 
a set of statistical relationships derived from present day observations and 
assumed not to change in the future. The influence of climate change 
feedback processes (see Chapter 2, Box 2.1) on characteristics of daily time 
series (for example runs of consecutive hot or dry days) therefore enters 
only through their effects on the input long term averages. Each of the RCM 
projections also accounts for effects of feedbacks on aspects of daily variability 
not explained directly by changes in the long-term average, subject of course 
to the uncertainties associated with climate model projections.

4. Each of the RCMs give a continuous time series of day-to-day data from 
January 1950 to December 2099 (see, for example, Figure 5.3). The UKCP09 
probabilistic projections, however, give changes in long term averages of 
climate for particular 30-yr periods. This means that daily time series from 
the Weather Generator, fed by inputs from the probabilistic projections, will 
be typical of the average climate throughout the relevant period, but will 
not show any trend in climate change within that period.

5. There are a large number of variables available from the RCM ensemble, at 
many model levels over both land and sea (for details see the LINK website); 
the Weather Generator outputs a more restricted number of variables at the 
land surface only — although these are the ones most commonly used in 
impacts research. 

The UKCP09 report Projections of future daily climate for the UK from the 
Weather Generator discusses the limitations of the Weather Generator in more 
detail. 

On the other hand, the main disadvantages of RCM ensemble data are:

1. The 11 model variants do not sample the full range of changes in time-
averaged climate expressed in the UKCP09 probabilistic projections. This is 
because the latter account for a wider range of process uncertainties, by 
sampling the full parameter space of the HadCM3 atmosphere model, while 
also catering for additional uncertainties arising from structural errors in 
atmospheric processes using alternative climate models, plus those arising 
from carbon cycle, sulphur cycle and ocean transport processes (see Chapter 
3). The Weather Generator, however, can be run by selecting from a very 
large sample of possible changes in time-averaged climate covering the full 
range implied by the probabilistic projections. 
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2. It follows from (1) above that users of RCM data should check projections 
of time-averaged climate change for variables of interest, to see where in 
the UKCP09 probability distributions they lie. An example is shown in Figure 
5.2; this is for a specific variable and different variables and time periods will 
show different distributions of the 11 RCM variants within the probability 
distributions. Such an exercise can provide an assessment of the relative 
likelihood of the time-averaged changes in any given RCM projection, 
just as it can for any set of time-averaged changes selected to drive the 
Weather Generator. Note, however, that it would be unwise to assume that 
the corresponding daily time series possess the same relative likelihood. 
This is because limitations in current climate modelling capability, or in the 
statistical assumptions used in the Weather Generator, imply that projections 
of future changes in detailed regional variability cannot be assumed to carry 
the same level of credibility as corresponding projections averaged over long 
periods. In the case of the Weather Generator, the statistics of changes in 
variability (for a given set of time-averaged changes) can be sampled more 
robustly than in the case of the RCM, by running multiple realisations with 
different initial conditions. However the results are still conditional on the 
assumptions indicated above. 

3. The RCM data are projections of simulated climate of the future, rather than 
ready-made projections of climate change. If the latter are required, then 
the user will need to difference data sets data for the two periods between 
which the change is required, for example 2060–2099 and 1990–1999. This 
does give the user the flexibility of using any number of different future 
time periods, and indeed baseline periods, of any length, rather than the  
30-yr time periods and 1961–1990 baseline period used in UKCP09. As with all 
model data, that from the RCM will contain biases, due to systematic errors 
of various sorts — note that these biases will also affect projections from the 
weather generator. Creating projections of climate change by taking RCM 
differences as described above will remove the effect of historical model 
biases. This does not, of course, imply that the future values will then be 
error free, due to the uncertainty in modelling future changes themselves. 

4. When using RCM data to drive models of climate impacts, the issue of model 
bias again needs to be considered. For example, in some cases the impacts 
model can be driven with daily data for both a future time period and 
a reference time period. The difference can then be taken as a plausible 
realisation of the impact of climate change. However, in other cases, the bias 
in the RCM may produce implausible results for the present climate from the 
impacts model, in which case a bias adjustment to the impacts by subtracting 
present from future may be inappropriate. 

Table 5.1 shows some of the differences between the two types of daily data 
sets; that available from the UKCP09 weather generator, and that from the RCM 
ensemble. 

Table 5.1 (opposite): Some characteristics 
of the data from the RCM ensemble and 
from the Weather Generator.
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Characteristic RCM ensemble Weather Generator

Geographic coverage? Land and marine areas (see Chapter 
3, Figure 3.8).

Land only. UK plus Isle of Man, but not 
Channel Islands.

Spatial Resolution? 25 km 5 km, but with no additional climate change 
information above projections at 25 km 
resolution.

Temporal resolution? Daily Synthetic daily data. No climate change 
information additional to that at monthly 
resolution in the probabilistic projections. 
Daily data is also disaggregated to hourly.

Continuous? Yes, from 1950 to 2099. 7 standard UKCP09 30-yr time periods, plus 
1961–1990.

Can users average daily time 
series from different grid 
squares to obtain time series 
for larger regions?

Yes, any number of grid squares can 
be averaged by users.

No, but users can configure the WG to 
produce time series for a single region of any 
size, up to a maximum area of 1000 km2.

Temporal averaging? Yes, can be done by users. Yes

Consistency between 
variables?

Yes Yes

Spatial coherence between 
grid squares?

Yes No

Can a relative probability be 
attached to the projected 
daily time series?

No. Daily time series from particular 
RCM variants should be interpreted 
as plausible realisations, but are 
subject to additional modelling 
caveats which preclude the 
assumption that we can assign some 
level of probability to them, based 
on the corresponding changes in 
time-averaged climate.

No. Weather Generator time series are also 
subject to additional caveats, associated 
with their internal statistical assumptions. 
Again, they should be regarded as plausible 
realisations consistent with current 
knowledge, but should not be treated as 
results to which some level of probability can 
be attached.

Samples the UKCP09 
probabilistic projections?

Partially. Designed to sample a range 
of possible responses, but not the 
full range expressed in UKCP09, for 
reasons explained above. 

Yes: can be driven by prescribed climate 
changes sampled from the full range 
of possibilities captured in the UKCP09 
probability distributions.

Projections of climate or 
climate change?

Daily climate, but with model biases 
in the historical simulations. Such 
biases can be empirically removed 
by expressing the future projections 
as changes relative to the model 
baseline climate, and then adding 
them onto an observed baseline. 
This does not guarantee that the 
projected changes are free from 
error. 

Daily synthetic climate. Historical baseline 
simulations are generated using statistics 
based on observations, which should 
(by construction) reduce biases in their 
characteristics, though the extent to which 
this is achieved depends on the characteristics 
in question. Future simulations are obtained 
by prescribing change factors obtained from 
the UKCP09 probability distributions, giving 
future time series whose characteristics 
can be differenced relative to the historical 
simulations to obtain projected changes.

Variables? Many, at several levels. Nine surface variables.

Threshold analysis of daily 
data?

No tool provided, but can be done 
by users offline.

Yes, using UKCP09 User Interface Threshold 
Detector.

Visualisation of results? None provided, but can be done by 
users offline.

Yes, using extensive capability in UKCP09 User 
Interface.

Emission scenarios? Medium Low, Medium, High
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5.4 Examples of data from the RCM ensemble

Figures 5.3–5.5 show some results from the RCM ensemble; these are purely to 
illustrate the sort of data which can be accessed by the user, rather than to draw 
any conclusions about climate change. However, note that the LINK access does 
not provide any graphics capability, so these types of figures cannot be created 
online. 

Figure 5.3 compares the simulated time series of summer (JJA) seasonal-mean 
daily maximum temperature from 1951 to 2099, from a 25 km grid square over 
Berkshire of each of the 11 RCM variants under the Medium emissions scenario. 
Figure  5.4 shows a similar set of time series of summer-mean precipitation for a 
grid square near Inverness; the large amount of noise due to natural variability 
is immediately apparent, showing that, despite a gradual reduction in summer 
precipitation through the 21st century, natural year-to-year changes remain 
larger than the projected climate change, even at the end of this period. Figure 
5.5 shows maps of summer-average rainfall simulated by one RCM variant for 
two 30-yr periods, 1961–1990 and 2070–2099. 

5.5 Some applications of RCM ensemble data

The RCM data has been used at the Centre for Ecology and Hydrology, 
Wallingford, to investigate changes in river flows over the course of the century. 
This is used as a worked example in the UKCP09 User Guidance to demonstrate 
the sort of application for which the RCM data might be appropriate. The data 
has also been used to drive the POL CSX model to estimate changes in the 
height of extreme water heights (storm surges); results from this are given in the 
companion UKCP09 science report Marine and coastal projections. 
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Figure 5.2: A UKCP09 probability 
distribution function, of change in mean 
summer precipitation at a 25 km square 
near Portsmouth, by the 2080s under the 
Medium emissions scenario. The added 
blue dots show the same change as 
projected by each of the 11 members of 
the RCM ensemble. Of course the PDF may 
well be quite different from the spread 
of RCM results, as the former includes 
information from other climate models 
and the effect of carbon cycle feedback, 
for example. 
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Figure 5.3: Simulated summer (JJA) 
seasonal-mean daily maximum 
temperature for a 25 km grid point in 
Berkshire, 1950–2099, under the Medium 
emissions scenario, from each of the 11 
RCMs.  

Figure 5.4: Simulated summer (JJA) 
seasonal-mean daily precipitation for 
the 25 km grid point near Inverness, 
1950–2099, under the Medium emissions 
scenario, from each of the 11 RCMs.

Figure 5.5: A map of summer (JJA) average 
precipitation (mm/day) from one member 
of the 11-member RCM ensemble, 
averaged over the period 1961–1990 (left) 
and over the period 2070–2099 under the 
Medium emissions scenario (right). 
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Annex 1: Emissions scenarios used 
in UKCP09

Each of the SRES emissions scenarios used in UKCP09 suggests a 

different pathway of economic and social change over the course 

of the 21st Century. Changes in population, economic growth, 

technologies, energy intensity, and land use are considered in the 

emissions scenarios. They do not assume any planned mitigation 

measures and cannot currently be assigned probabilities. 

A1.1 Background

We need to make some assumptions about future emissions of greenhouse gases 
(and other pollutants) from human activities in order to make projections of UK 
climate change over the next century. Because we cannot know how emissions 
will change, we use instead a number of possible scenarios of these, selected 
from the IPCC Special Report on Emissions Scenarios (SRES) (Nakićenović and 
Swart, 2000). These correspond to a set of comprehensive global narratives, or 
storylines, that define local, regional and global socio-economic driving forces 
of change such as economy, population, technology, energy and agriculture — 
key determinants of the future emissions pathway. The scenarios are alternative 
conceptual futures to which no probabilities can be attached. 

SRES emissions scenarios are structured in four major families labelled A1, A2, B1 
and B2, each of which represents a different storyline. They are commonly shown 
as in Figure A1.1, in which the vertical axis represents the degree to which society 
is economically or environmentally oriented in the future, whilst the horizontal 
axis refers to the degree of globalisation. All scenarios are non-interventionist, 
that is, they assume that emissions will not be changed in response to concerns 
over climate change. 

The A1 storyline describes a future world of very rapid economic growth, and a 
population that increases from 5.3 billion in 1990 to peak in 2050 at 8.7 billion 
and then declines to 7.1 billion in 2100. Rapid introduction of new and efficient 
technologies is assumed, as is convergence among regions, including large 
reductions in regional differences in Gross Domestic Product (GDP). Within the 
A1 family are three subgroups, referring to high use of fossil fuels (A1F1), high 
use of non-fossil energy sources (A1T) or an intermediate case (A1B). 

Rachel Warren, Tyndall Centre for 
Climate Change Research, UEA.
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The B1 storyline also describes a convergent, more equitable world, and has 
the same population scenario as the A1 storyline: however, rapid changes in 
economic structures towards a service and information economy are assumed, 
with reductions in material intensity, and the introduction of clean and resource-
efficient technologies. Global solutions are found to economic, social and 
environmental sustainability. 

The High, Medium, and Low emission scenarios in the UKCP09 report correspond 
to the A1F1, A1B and B1 SRES scenarios. The High and Low emission scenarios are 
the same as those of the same name used in UKCIP02. They span almost the full 
range of SRES scenarios, with cumulative (2000–2100) CO2 emissions of 2189 GtC 
and 983 GtC respectively. SRES A2 and B2 storylines, with higher, continuously 
increasing population scenarios (to 15.1 and 10.4 billion in 2100 respectively), are 

Figure A1.1: The SRES storylines/emissions 
families.
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not used in UKCP09, as the population assumed in the A2 storyline is significantly 
higher than the high end of current projections.

Extreme high or low emissions scenarios, for example very high rates of fossil 
fuel combustion or strong mitigation in response to concerns over climate 
change, are also not considered in the projections available from UKCP09. The 
UKCP09 Low emissions scenario (SRES B1) does, according to some models, result 
in approximate stabilisation of CO2 concentrations between about 500 and 600 
ppm. However, when the full (ocean and land) climate–carbon cycle feedback is 
included, as is done in UKCP09, then the CO2 concentrations will vary over a wide 
range. 

A1.2 Relevant work since the publication of SRES

The IPCC AR4 (2007) assessment, Working Group 1 Chapter 10 and Working 
Group 3 Chapter 3, reviewed the new data on demographics, economic trends 
and energy use and concluded that the emission ranges from scenarios that do 
not include climate policy that were reported before and after the SRES study 
in 2000 have not changed appreciably: hence they are still used as the basis for 
the 2007 IPCC assessment and for the UKCP09 projections. However, population 
scenarios produced by some major institutions (van Vurren and O’Neill, 2006) are 
now lower than they were in 2000, specifically for Asia, Africa, Latin America and 
the Middle East, which more than compensates for the slightly higher population 
projections for OECD countries. As a result, the population projections that are 
considered within the emission scenarios assumed as the basis of the UKCP09 
projections, with a population of 7.1 billion in 2100, are some 1.3–1.9 billion 
below the current central estimates of 8.4–9.0 billion (Lutz et al. 2004; UN, 2004; 
Fisher et al. 2006). However, van Vurren and O’Neill (2006) also note that the 
projection of global GDP growth for the A1 family is higher (3.1% per yr) than 
the ranges (1.2–2.5%/yr) of current projections (USDoE, 2003; IEA, 2004). 

The full SRES range of emission projections is actually still considered to be 
representative of the range of likely outcomes, because in studies which have 
incorporated the revised lower population estimates, emissions have not 
decreased because the reduction has been partly compensated for by changes 
in other drivers such as energy intensity (which has declined slower than 
anticipated) and the rate of technological change (which has also been slower 
than expected). These is turn are due to less rapid turn-over of capital stock in the 
energy sector, and slow penetration of new and advanced technologies due to 
lack of investments (Grubler et al. 2004). Other studies have not yet been revised 
to take account of these lower projections.

In the SRES scenarios used here, as well as in subsequent studies of future emission 
pathways, baseline land-related greenhouse gas emissions remain important 
throughout the 21st century. They include continued, although slowing, land use 
change (e.g. deforestation) and also increased use of high-emitting agricultural 
intensification practices due to the anticipated rising global food demand 
and shifts in dietary preferences towards meat consumption. More recent 
scenarios (e.g. Soares-Filho et al. 2006) suggest significantly more rapid rates of 
deforestation than those in the SRES scenarios, which would act to enhance the 
climate forcing and potentially make climate change more rapid. 

There has been a debate on the form of exchange rates, market exchange rates or 
purchasing power parities, used in the SRES (2000) simulations. However, evidence 
from the limited number of new studies indicates that the choice of metric for 
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GDP does not appreciably affect the projected emissions, when metrics are used 
consistently, with the differences being small compared to other uncertainties 
such as rates of technological change. This is because when the exchange rate 
type is changed, the emission intensities change in a compensating manner when 
the GDP numbers change (van Vurren and O’Neill, 2006; Fisher et al. 2007). 

Raupach et al. (2007) have compared recent global carbon dioxide emissions, 
estimated by two US government groups, EIA (Energy Information Administration) 
and CDIAC (Carbon Dioxide Information Analysis Center), with those assumed in 
the SRES scenarios. They find that CO2 emissions increased by more than 3%/
yr between 2000 and 2004, compared to 1.1%/yr for 1990–1999. This rate of  
3%/yr is faster than that in any of the SRES scenarios, and it might be inferred from 
this that the latter underestimate future emissions, and this would mean that 
the UKCP09 projections are also an underestimate. However, there are obvious 
dangers in using comparisons over such a short period to draw conclusions about 
emissions over the next decades and century. 

Some guidance on using the uncertainty associated with the three UKCP09 
emissions scenarios is provided in the UKCP09 User Guidance. 
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CLIMATE
PROJECTIONSUK 

The UKCP09 probabilistic projections inevitably depend upon 

a number of assumptions in the methodology used to produce 

them. Sensitivity tests can be performed on elements of the  

methodology to assess the robustness of the projections to  

reasonable variations in key assumptions. It should be noted that 

not all variables and assumptions can be tested at this time, but 

further work is planned.

A2.1 Introduction

This Annex supplements the description of our methodology for probabilistic 
climate projection, given in Chapter 3. Here, we describe a number of sensitivity 
tests designed to assess the robustness of the projections to reasonable variations 
in some of our main assumptions. We also give examples showing how the 
spread of outcomes implied by our probabilistic projections arises from different 
components of the method. The material described in this Annex necessarily 
assumes a similar level of scientific and technical understanding to Chapter 3; 
however, we summarise key conclusions in Section 4, omitting technical detail.

The key point is that while the UKCP09 probabilistic projections provide estimates 
of uncertainties in future climate change, it is also inevitable that the probabilities 
are themselves uncertain. If the uncertainties in the probabilities are sufficiently 
small compared with the uncertainties quantified by the probabilities, then 
the UKCP09 results are likely to be sufficiently reliable to be used in support 
of assessments of impacts, vulnerability or adaptation. This Annex provides 
examples of the type of information which will help users judge the robustness 
of the projections in the context of their specific applications. It should not be 
assumed that the precise levels of robustness shown in this Annex apply to all 
UKCP09 variables, time periods and spatial locations. Further examples of our 
sensitivity tests will therefore be made available on the UKCP09 website (see 
http://ukclimateprojections.defra.gov.uk). Note that user assessments of the 
reliability of the UKCP09 projections will also depend on the degree of precision 
required on a case-by-case basis, compared with other uncertainties that users 
would have to contend with (for example in greenhouse gas emissions, impacts 
models, adaptation costs, government policy, local planning decisions, etc.). 

Annex 2: Sensitivity of UKCP09  
projections to key assumptions

David Sexton and James Murphy, 
Met Office Hadley Centre
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Therefore, while we can assess the robustness of the probabilistic projections 
based on tests of the underlying scientific methodology, decisions on their utility 
in user applications depend on additional factors beyond the scope of climate 
science. 

Chapter 3 describes how our probabilistic projections are derived. Essentially, 
we produce a large number of projections of historical and future climate 
using perturbed variants of a number of configurations of the HadCM3 climate 
model, designed to sample major known uncertainties in relevant climate system 
processes. Different projections are weighted according to how well their his-
torical components fit a set of observations, and we then integrate over the 
weighted projections to produce probabilities for alternative realisations of 
21st century climate. The probabilities are therefore Bayesian in their nature, 
representing the relative credibility of different future outcomes, conditioned 
on a mixture of expert judgements, model and observational data and their 
associated uncertainties (the statistical framework used to produce them is 
described in Chapter 3). However, probabilistic climate projections inevitably 
depend not only on the data, but also on the statistical method used and the 
choices required by that method (see Chapter 3). Plausible variations in those 
choices will alter the projections to some extent, and this gives rise to uncertainties 
in the specified probabilities, as pointed out above. Henceforth, for clarity, we 
use the term sensitivity to refer to variations in the UKCP09 probability values 
in responses to the exploration of alternative methodological assumptions, 
and uncertainty to refer to the spread of outcomes quantified by the UKCP09 
probabilities themselves. 

A2.2 Sensitivity studies

Methodological choices generating sensitivities in the probabilistic projections 
fall into several categories:

i. Some assumptions are currently untestable (see discussion in Section 3.3). 
This is an inevitable consequence of any probabilistic projection method, 
due to limitations in scientific understanding, modelling capability, or 
computational resource. For example, we neglect the possibility of non-linear 
interactions between uncertainties in regional climate feedbacks arising 
from atmospheric, carbon cycle, sulphur cycle and ocean processes, because 
it is not yet feasible to run large ensembles of climate model simulations in 
which all of these processes are simultaneously perturbed. 

ii. Some choices are based on a mixture of scientific reasoning and feasibility. 
For instance, we aim to use historical observations of a wide range of 
different climate variables to constrain our projections, because this reduces 
the risk that a model variant could be given a high weight by achieving a 
good historical simulation of a limited set of variables through a chance 
compensation of errors in its detailed representations of physical processes. 
We achieve this by using many thousands of pieces of observational 
information (consisting mainly of multiyear averages of global fields of 
several different variables in different seasons of the year), while noting 
limitations imposed by compromises in our experimental design, and by 
lack of availability of data from other climate models. In principle, we could 
test the impact of withholding some of the observational variables used in 
our analysis. However each of the observables (Section 3.2.9) was chosen 
to provide information about a different aspect of historical climate, and 
as such provides information with a significant degree of independence 



141

UK Climate Projections science report: Climate change projections —  Annex 2

from that provided by the other variables. Removing one or more of these 
would therefore significantly degrade our ability to provide an observational 
constraint which effectively discriminates between physically plausible and 
implausible model variants, so the results of such a sensitivity test would be 
less credible than the UKCP09 results. We therefore do not investigate such 
a test here. 

iii. Other choices are subjective. These can be divided into three groups, explained 
in this paragraph, and in (iv) and (v) below. First, there are a number of choices 
in our procedures which require expert judgement, but can be supported by 
diagnostic checks. These include, for example, choices between alternative 
statistical regression models in the emulation, timescaling and downscaling 
techniques described in Chapter 3. Another example relates to the use of 
observational data. While we wish to use as many observational variables as 
possible (as explained above), in practice we have to reduce the information 
to a limited set of global spatial patterns (multivariate eigenvectors), in 
order to make our statistical calculations tractable. These eigenvectors 
explain the main variations in simulated values of the observable variables 
found in a large ensemble of perturbed climate model variants (see Section 
3.2.9). We use six eigenvectors, based on diagnostic tests indicating that this 
choice strikes a reasonable balance between the need to include enough 
information to calculate weights which are effective in capturing variations 
in simulation quality between different model variants, and the risks of 
trying to include too much information. Use of too many eigenvectors could 
result in (a) the inclusion of noisy patterns which do not capture physically 
meaningful variations in behaviour across our ensemble of alternative 
model variants, and (b) the risk that too few model variants would receive 
a non-negligible weight, in which case it would not be possible to obtain 
statistically robust projections when approximating an integration over all 
possible model variants (i.e. over all points in the model parameter space) 
using a finite sampling strategy (see Section 3.2.12). However, we test the 
sensitivity to this choice by recalculating selected results assuming retention 
of five eigenvectors (see following discussion of Figure A2.1).

iv. Some choices are subjective in principle, but are also limited by what 
information is available. An important example is the set of alternative 
climate model results available for use in our calculation of the effects of 
structural model errors (discrepancy, see Section 3.2.8). We recognise that if 
a larger sample had been available we might have obtained different results; 
however, we show below that reducing the set of climate models used has a 
limited impact on our probabilistic projections for surface temperature and 
precipitation, compared with the total uncertainty expressed through the 
spread in the UKCP09 probability distributions. 

v. The third category of subjective choices encompasses those which are based 
on expert judgement, and are essentially unconstrained by objective checks 
or practical issues such as availability of resources. In our case, the most 
obvious example consists of the expert distributions for uncertain climate 
model parameters controlling surface and atmospheric processes, which 
form a fundamental prior input to our Bayesian method of climate projection 
(see Section 3.1). In our integration over model parameter space, we assume 
that these parameters are equally likely within the middle 75% of the range 
estimated by experts, and that the probability drops linearly to zero at the 
minimum and maximum values. However, alternative choices could also be 
justified, so the sensitivity of the results to these needs to be tested (see 
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below). This is feasible, because our method includes a statistical emulator of 
climate model output which can estimate results likely to be obtained for any 
given combination of parameter settings. 

A2.2.1 Sensitivity of results to plausible variations in the UKCP09 
methodology 
In this section we demonstrate the sensitivity of our results to a number of choices 
falling into categories (iv) and (v) above. We focus on changes in 30-yr averages of 
temperature and precipitation over Wales in winter and summer, as examples of 
two of the most important variables contained in the projections. Note, however, 
that the sensitivities are liable to be different for different variables. 

The black curves in Figure A2.1 quantify the total uncertainty in the UKCP09 
projections (omitting the downscaling component, as this example considers a 
global climate model grid box). The contribution of structural modelling errors 
to the total uncertainty, represented by the discrepancy term of our Bayesian 

Figure A2.1: Probability distributions from 
six sensitivity tests (coloured) compared 
to UKCP09 results (black). The tests 
were done for summer and winter, for 
absolute changes in mean temperature 
(ºC), and percentage changes in mean 
precipitation, for 2070–2099 relative 
to 1961–1990. Results are presented 
for a global climate model grid box 
corresponding approximately to Wales, 
and are based on application of the full 
methodology of Chapter 3, apart from 
the downscaling step of Section 3.2.11. 
Uniform prior and Inflated uniform 
prior refer to changes to the expert-
specified distributions for surface and 
atmospheric climate model parameters; x2 
discrepancy, x0.5 discrepancy and No low 
resolution multimodel denote variations 
to our method of estimating the effects 
of structural model error, and Five 
eigenvectors tests the effect of reducing 
the number of multi-variate spatial 
patterns used to weight different model 
variants according to their fit to historical 
observations of recent climate. Plots on 
the left-hand side show prior probabilistic 
projections, that is ones obtained after 
sampling the uncertainties accounted 
for in UKCP09, but without constraining 
the projections with observations. 
Plots on the right hand side show 
posterior probabilities after applying the 
observational constraints. Further details 
in text.
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framework and derived from alternative climate models, is recognised as an 
element of the methodology which is important, yet difficult to quantify (see 
Section 3.2.8 and above). We test the sensitivity to the discrepancy in two ways. 
First, we double the variance of the discrepancy associated with future projections 
of climate variables. This is done on the basis that our method could underestimate 
discrepancy, given the relatively small sample of results available from alternative 
climate models; we also try halving the variance, in order to clarify the effects 
of varying the discrepancy spread in both directions. Diagnostic tests show that 
our estimates of the discrepancy associated with historical simulations of climate 
(Section 3.2.8) may actually be larger than the systematic component of model error 
found in verification against observations in practice (at least for the observables 
used in our calculations). While it does not necessarily follow that our estimates 
of future discrepancy are also likely to be too small, this result does underline the 
possibility that we could have overestimated discrepancy, particularly by assuming 
that all the alternative climate models included in our calculation are equally 
credible (Section 3.2.8). In addition to halving the discrepancy variance, we also 
test the possible consequences of this by removing two models with relatively low 
spatial resolution from the multimodel ensemble (noting that low resolution is 
only one of a number of possible causes of model error). This test can potentially 
alter the mean value of the contribution of structural model error, as well as the 
spread about the mean value, whereas the variance perturbation tests only alter 
the spread. Neither of these tests addresses the possibility that there could be a 
common bias in future projections from all current climate models. This is another 
example of an untestable assumption, since there is no obvious basis on which to 
estimate how large such a bias could be.

We also test the expert prior choices for the distributions of uncertain climate 
model parameters controlling surface and atmospheric processes, this being a 
fundamental input to our methodology (see Sections 3.2.3 and 3.2.7). For any 
given parameter, we assume its distribution to be uniform (i.e. to show an 
equal probability for alternative settings) for values within the middle 75% of 
the range of possible values given by experts, and then to drop to zero at the 
extreme low and high values. However, such prior distributions are recognised as 
being themselves uncertain (e.g. Frame et al. 2005; Rougier and Sexton, 2007), 
so we investigate two other choices: assuming uniform probability across the 
full expert range, and assuming uniform probabilities across a full range of 
values 15% larger than that specified by experts. The latter, in particular, is a 
conservative specification which assumes both that the experts systematically 
underestimated the extremes of their ranges, and that the extreme values can 
be assumed no less likely than values near the middle of the range. For some 
parameters, this test involves pushing their values close to absolute extremes: 
for example the mixing coefficient for convective entrainment (which has the 
largest impact on global climate sensitivity of any of the parameters considered 
(Murphy et al. 2004; Stainforth et al. 2005) cannot fall below zero by definition, 
yet the inflated uniform prior has the effect of considering values close to zero 
at one of its bounds. In order to pursue the second test, we have to assume that 
our emulator (used to predict climate model output at any desired combination 
of parameter settings — Section 3.2.3) gives realistic results when applied to 
parameter values outside the range on which it was trained. 

Figure A2.1 shows in its left-hand column the effects of the applied sensitivity 
tests on the prior probabilistic projections (that is prior to the weighting of 
different regions of parameter space according to the fit to our set of historical 
observations), and in its right-hand column the effects on the posterior projections 
(after the observational constraints have been applied). The sensitivity tests 
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Figure A2.2: Posterior probabilistic 
projections from six sensitivity tests 
(coloured) compared to UKCP09 results 
(black), for summer changes in a typical 
warmest day of summer (ºC), defined as 
the 99th percentile of daily maximum 
temperatures during June to August. 
Changes are shown for the global climate 
model grid boxes corresponding to SE 
England (left) and NE England (right), 
for 2070–2099 relative to 1961–1990. 
Sensitivity tests are as described in Figure 
A2.1.
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Figure A2.3: Posterior probabilistic 
projections from six sensitivity tests 
(coloured) compared to UKCP09 results 
(black), for summer changes in average 
temperature (ºC) for 2070–2099 relative 
to 1961–1990, over a number of regions 
defined by Giorgi and Francisco (2000). 
Sensitivity tests are as described in Figure 
A2.1.
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are found to have a significant impact on the prior projections, especially for 
precipitation. This shows that the tests represent significant perturbations to 
our methodology, potentially capable of exerting an important influence on the 
results. However the impacts on the posterior projections are more modest, and 
the induced differences in probability are also relatively small compared with the 
uncertainties indicated by the UKCP09 distributions (black curves). This shows 
that the observational constraints play a key role in discriminating between the 
degrees of credibility of projections obtained from different parts of the model 
parameter space, and hence in rendering the method reasonably robust to 
significant variations in the set of key choices investigated, at least for the vari-
ables considered in Figure A2.1. This is underlined by Table A2, which shows how 
the sensitivity tests affect values for the 10, 50 and 90% probability levels of the 
projected changes. The variations from the UKCP09 results do not exceed 0.5ºC 
for surface temperature, or 7% for changes in precipitation. These sensitivities, 
while relatively modest, are larger for the more extreme probability levels, and 
users will need to assess their consequences when set against other uncertainties 
associated with specific decision problems, as well as against the backdrop of 
climate projection uncertainties discussed in this Annex.

Figure A2.2 shows the impact of the same sensitivity tests on changes in the 
intensity of a typical warmest day of summer, characterised as changes in the 
value of the 99th percentile of daily maximum temperatures from June to August. 
Again the effects of the sensitivity tests, on the posterior probabilistic projections 
are fairly modest, while the impacts on the prior probabilistic projections (not 
shown) are considerably larger. Similar results are found for projections of mean 
temperature and precipitation in other regions of the world. As an example, 
Figure A2.3 shows temperature projections for June to August over several 
different regions. Again the variations in the posterior projections are modest, 
while the variations in the prior projections (not shown) are larger.

A2.3 Comparison of UKCP09 methodology against  
alternative approaches

The above tests consider variations in specific aspects of our methodology, 
however it is also important to consider how different the results could have been 
had we chosen an entirely different approach. Here, the first point is that while 
a number of methods for probabilistic climate projection have been published 
in the research literature, we are not aware of any that have been designed 
to sample uncertainties as comprehensively as is done in UKCP09 (for example, 
there are several methods which sample uncertainties in physical climate system 
processes, but none which combines these with uncertainties in both carbon 
cycle processes and downscaling). This is because it is acceptable in academic 
studies to explore methodologies which are conditional upon the omission of 

10% Probability level 50% Probability level 90% Probability level

Summer temperature 2.1, 2.4, 2.7 4.1, 4.2, 4.6 6.1, 6.3, 6.8

Winter temperature 1.7, 1.8, 1.9 2.9, 2.9, 3.0 4.2, 4.2, 4.3

Summer %precipitation –54.5, –51.2, –48.0 –31.7, –28.1, –26.6 –3.2, 0.2, 3.6

Winter %precipitation 6.4, 8.4, 13.3 23.9, 24.4, 30.6 44.5, 46.9, 54.0

Table A2: Sensitivity to a number of key 
assumptions (see text) of three probability 
levels values for changes in surface 
temperature (ºC) and precipitation (%) 
for Wales, as an example GCM grid box. 
Summer and winter changes are for the 
period 2070–2099 relative to 1961–1990. 
Each triplet consists of the UKCP09 value 
(in bold), accompanied by the lowest 
and highest values obtained from the six 
sensitivity tests of Figure A2.1.
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important known sources of uncertainty, however this would not be acceptable 
in a project like UKCP09, since our aim is to produce information suitable to 
support user decisions in the real world. So we cannot compare UKCP09 against 
some competing approach designed to produce probabilities with the same level 
of decision-relevance. 

However, by omitting some elements of the UKCP09 approach we can compare 
it against alternative methodologies conditional on sampling similar subsets of 
the uncertainties in climate projection. For example, a number of approaches 
have been suggested in which probabilistic projections are derived purely from 
results from a multi-model ensemble of global coupled ocean–atmosphere 
models of typically 10–20 members (Tebaldi and Knutti (2007) review several of 
these), rather than our approach of using larger ensembles of model variants 
specifically designed to sample uncertainties, with multi-model ensemble 
results playing a significant but more subsidiary role. Some of the multi-model 
approaches are nevertheless similar to ours in their basic character, in that they 
seek to construct a range of alternative projections which express the effects 
of uncertainties arising from modelling errors, and then adjust these according 
to some set of observational constraints. Another class of approaches seeks to 
project future changes explicitly designed to be consistent with uncertainties in 
some set of observations of recent climate, using climate model results to provide 
the necessary relationships between historical observations and future changes 
(e.g. Piani et al. 2005; Knutti et al. 2006; Sanderson et al. 2008). Closely related to 
these are approaches which seek to project future changes by assuming a linear 
relationship between errors in past and future changes, constraining future 
changes according to the range of past errors consistent with observations (Allen 
et al. 2000; Stott and Kettleborough 2002; Stott et al. 2006a). 

We compare our projections for annual mean temperature with those made by 
a method of the latter type, based on Stott et al. (2006a). Their method uses 
model simulations and historical observations of changes in surface temperature 
during the 20th century to derive a distribution of alternative scaling factors 
which can be applied to the simulated changes to fit the observed changes to 
a level consistent with uncertainties in the latter. The distribution of scaling 
factors is then applied to the future model response to produce a probabilistic 
climate projection. Stott et al. (2006a) produced two versions of this technique. 
The first version projected future regional changes according to past changes in 

Figure A2.4: Comparison of probabilistic 
climate projections for changes in  
10-yr annual mean 1.5 m temperature 
(ºC) in response to SRES A1B (i.e. UKCP09 
medium) emissions. Changes shown are 
for Northern Europe, relative to 1906–
2005, from two methods: UKCP09 (red) 
and an updated version of Stott et al. 
(2006a) (blue). The probability levels are 
2.5, 10, 50 (thick), 90, and 97.5% as used 
in Stott et al. (2006a). The observations 
are also shown as the black line.
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the same region (thus obtaining relatively conservative estimates of uncertainty 
by neglecting possible constraints from aspects of past change remote to the 
region of interest); the second version scaled future regional changes according 
to errors in past spatial and temporal patterns of change over the whole globe 
(thus obtaining narrower estimates of uncertainty, although this does not take 
account of possible errors in the regional pattern of response, since it scales 
the model’s pattern of response over the whole globe by the same factor, with 
uncertainties, for each region). We use an updated version which accounts for 
past changes in global patterns of surface temperature, thus removing the 
contrasting limitations of the two earlier techniques. The Stott et al. method 
provides projections for large regions (no downscaling method is included), and 
does not account for uncertainties in future changes in radiative forcing arising 
from carbon cycle processes. Therefore, we consider a like-for-like comparison of 
projections of spatially averaged temperature for the whole of northern Europe, 
applying the UKCP09 methodology without downscaling, and with no sampling 
of the effects of future uncertainties in climate feedbacks involving the carbon 
cycle (by holding these feedbacks fixed at values diagnosed from the standard 
published variants of the relevant configurations of HadCM3). Both methods 
assume that there is a negligible effect from other possible sources of uncertainty 
in either historical forcing (e.g. black carbon) or future changes (e.g. methane 
cycle) — see Box 2.1, Chapter 2. 

We applied the Stott et al. method to each of the 17 members of our PPE_A1B 
ensemble of perturbed variants of HadCM3 (Section 3.2.4 and Figure 3.2), 
obtaining projections with associated uncertainties from each ensemble member, 
and combining these to form probabilistic projections shown by the blue curves 
in Figure A2.4. The results show that the median projection of future changes 
is slightly smaller in the UKCP09 method. The UKCP09 method also produces 
a slightly wider spread from 2010 onwards, but a somewhat narrower spread 
during the historical period. Uncertainties from UKCP09 broaden by including 
a more complete sampling of the possible uncertainties arising from parameter 
choices in models and structural model errors common to model projections, 
and narrow by including a wider range of observational constraints, whereas 
the Stott et al. uncertainties rely on linear scaling of available model simulations 
based on a more limited range of observational constraints. Such differences 
could serve to broaden or narrow the UKCP09 uncertainty ranges relative to 
the Stott et al. uncertainty ranges, dependent on their competing influences. 
A detailed examination of these differences is beyond the scope of this report. 

The Stott et al. method is set up to provide projections which are relatively 
conservative (in the sense that only one relatively well understood observational 
constraint is used), and which minimise their dependence on the set of climate 
model simulations used to produce them (Stott et al. 2006b). Projections derived 
from this technique will be determined by the scaling factors, and associated 
uncertainties, found by matching simulated and observed realisations of the past 
climate warming attributable to human activity. On the other hand, the UKCP09 
approach is based on a different philosophy which seeks to place more weight on 
detailed aspects of climate system physics, both by sampling possible variations 
in these more widely, and then seeking to constrain them with a wider range 
of observations. It is therefore reassuring that two methods based on different 
principles and assumptions should give relatively similar projections in practice. 
This further supports the results of Figure A2.1 in indicating that the UKCP09 
projections are likely to be reasonably robust to the key assumptions involved in 
their generation. 
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A2.4 Contributions to uncertainty in the UKCP09 projections 

In Chapter 2, we identify three basic sources of uncertainty in projected climate 
change, associated with emissions of greenhouse gases, aerosols and their 
precursors, internal climate variability arising from natural unforced variations in 
the atmospheric and oceanic circulation, and uncertainty in modelling the forced 
response to emissions. For a given emissions scenario (in this case SRES A1B, the 
UKCP09 medium scenario), we consider the relative contributions of internal 
variability and modelling uncertainty to the total uncertainty expressed in the 
UKCP09 projections. We consider first an example involving the same variables 
analysed in Figure A2.1 (i.e. changes to summer and winter temperature and 
precipitation over the global climate model grid box representing Wales), thus 
omitting uncertainty arising from the downscaling step of Section 3.2.11, which 
is considered later. We partition modelling uncertainty into a few components 
representing key elements of our methodology. These consist of: 

•	 Parameter uncertainty, arising from uncertainties in the values of climate 
model input parameters that control key physical processes. UKCP09 is based 
on a comprehensive strategy for sampling parameter uncertainties in the 
atmospheric component of the HadCM3 climate model, by combining a large 
ensemble of model simulations with emulation of the outputs of possible 
model variants for which we do not possess an actual simulation (Section 
3.2.3). In addition, we sample parameter uncertainties in ocean and sulphur 
cycle processes using a more limited strategy based on 17 member ensembles 
of alternative model variants. We define parameter uncertainty to include all 
of these sources of uncertainty (including uncertainty arising from emulator 
error in the case of atmospheric parameters), but note that atmospheric 
parameters provide the dominant contribution. Our method for the 
quantification of uncertainties in carbon cycle processes, which we consider 
under a separate heading below), also contains a substantial contribution 
from parameter uncertainties associated with terrestrial ecosystem processes 
in HadCM3C (the configuration of HadCM3 including an interactive carbon 
cycle).

•	 Structural uncertainty, which measures the additional uncertainty due to 
modelling errors which cannot be resolved by varying uncertain parameters 
in HadCM3 (Section 3.2.8). As a proxy for this, we use information from 
alternative contemporary climate models, assuming that errors in our ability 
to predict their historical and future simulations of climate form reasonable 
estimates of structural errors in the ability of HadCM3 to simulate the real 
climate system. Note that our strategy estimates the impacts of structural 
errors in atmospheric processes, but not in ocean transport or sulphur cycle 
processes.

•	 Timescaling uncertainty is the uncertainty that arises from the need to predict 
time-dependent climate responses from the simulations of the equilibrium 
response to doubled levels of carbon dioxide which form the basis of our 
strategy for sampling uncertain atmospheric model parameters (see Sections 
3.2.4 and 3.2.6). The uncertainties associated with timescaling include the 
effects of internal variability. We remove these in the analysis below, in 
order to isolate uncertainties arising from methodological assumptions in 
our procedure, for example that time-dependent climate changes can be 
assumed to be linearly related to changes in globally averaged temperature.
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•	 Carbon cycle uncertainty. This is assessed in a separate category because 
carbon cycle feedbacks (e.g. Friedlingstein et al. 2006) are recognised to give 
rise to a level of uncertainty in global temperature projections comparable 
to that due to atmospheric processes. These are sampled by combining 15 
perturbed variants of HadCM3C with simulations from an alternative multi-
model ensemble of nine coupled climate–carbon cycle models (see Sections 
3.2.4 and 3.2.6).

Uncertainty due to internal variability is estimated from long control simulations 
of members of the PPE_A1B ensemble carried out with no changes to the 
applied external forcing. We quantify timescaling uncertainty by executing our 
methodology with parameter and carbon cycle uncertainties removed (by fixing 
values for all model parameters in all Earth System components to those used in 
the standard published variants of the relevant HadCM3 configuration), and with 
the future component of the structural uncertainty set to zero. The component 
of timescaling uncertainty due to internal variability is then subtracted, in order 
to isolate the aspects that could potentially be removed by improvements to the 
methodology in future (see Section 4). 

The contributions from parameter, carbon cycle and structural uncertainty are 
calculated by repeating the probabilistic projections, each time removing one or 
more of these components (either by fixing relevant parameters to their standard 
values, or by setting future structural uncertainty to zero), and then comparing 
the spread of the projected changes for 2070–2099 relative to 1961–1990. For 
instance, to estimate the increase in spread due to carbon cycle uncertainty we 
run the projection twice, the first time sampling the carbon cycle parameters as 
described in Section 3.2.6, and the second time fixing the carbon cycle parameters 
to their standard values. A limitation of this approach is that the change in spread 
due to addition of carbon cycle uncertainty depends on which other sources 
of uncertainty have previously been sampled, as the uncertainties combine 
in nonlinear ways. For instance, carbon cycle feedbacks (and their associated 
uncertainties) are larger when temperature changes are high, and only when the 
other sources of uncertainty are sampled do the temperature changes become 
large enough for a large carbon cycle feedback. So we run all eight permutations 
of fixing/sampling parameter, carbon cycle and structural uncertainty (with 
internal variability and timescaling uncertainties always included). From this set 
of eight, we have four pairs of runs which can each be used to look at the increase 
in spread that arises from allowing each of the three types of uncertainty to be 
sampled rather than kept fixed. Then we take the root-mean-square change in 
spread, and plot the relative size of the contributions in a pie chart in Figure 
A2.5. Spread is measured as the distance between the 10 and 90% probability 
levels of relevant probability distributions.

For the four examples shown in Figure A2.5, parameter uncertainty provides 
the largest contribution (22–31%). This occurs despite the fact that formal 
observational constraints have been applied to limit the impact of parameter 
uncertainties (particularly the dominant contribution from atmospheric 
model parameters), whereas this is not the case for the other components of 
uncertainty in Figure A2.5. In fact each of the other components typically adds 
a significant contribution of its own (in the range 12–27%), and no single 
source of uncertainty dominates. For winter precipitation no contribution from 
(the methodological aspects of) timescaling is shown, as the total timescaling 
uncertainty (i.e. including internal variability) is found to be the same as our 
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Figure A2.5: The relative contributions of 
different components of uncertainty to 
the overall spread in UKCP09 projections. 
These are calculated for summer and 
winter and for changes in temperature 
and percentage changes in precipitation 
for the Wales global climate model grid 
box, considering projected changes for 
2070–2099 relative to 1961–1990. Spread 
is measured as the distance between 
the 10th and 90th probability levels of 
relevant probability distributions (this 
being a standard metric of spread in non-
Gaussian distributions), expressing the 
spread obtained from each component 
of uncertainty relative to that obtained 
when all components are included.

Figure  A2.6: As Figure  A2.5 but for 
2010–2039.
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independent estimate of internal variability in isolation (derived from model 
control simulations as described above). While we focus here on contributions to 
the spread of our probabilistic projections, we stress that each of the elements of 
the methodology considered in Figure A2.5 (apart from internal variability) can 
also shift the distributions, thus affecting aspects such as the mean, median or 
mode. For example adding carbon cycle feedbacks increases the mean projected 
warming (as well as adding uncertainty), while the mean reduction in summer 
precipitation projected over much of the UK is ameliorated somewhat by the 
inclusion of the uncertainty associated with structural model errors, since our 
projections of the changes simulated by other climate models tend to be too dry.

Figure A2.6 repeats the analysis of Figure A2.5 for an earlier projection period, 
2010–2039. This demonstrates the changing role of different contributions to 
uncertainty at different lead times. In particular, internal variability increases in 
significance, becoming the largest contribution in three of the four cases. The 
other components are generally smaller than at 2070–2099, though parameter 
un-certainty still contributes at least 20% in all cases.

Downscaling uncertainties
The effect of downscaling, and its accompanying uncertainty, varies greatly 
with climate variable, meaning period and location (e.g. Figure 3.11 in Section 
3.2.11), so cannot be characterised using a single typical example. We therefore 
show several examples of how uncertainties break down when downscaling 
is included. In UKCP09, uncertainties in downscaling are characterised by the 
variance of the residual errors found when regressing changes in the local 
target variable in our regional climate model simulations against changes in the 
same variable at a nearby grid point in the driving global model simulations 
(see Figures 3.9 and 3.10 and associated discussion). These residuals arise from 
uncertainty in the relationships between future changes simulated by the global 
and regional models, which in general can arise both from the systematic effects 
of variations in model physics, and also from internal variability at fine scales 
generated within the regional model domain. We do not attempt to diagnose 
the relative magnitudes of these two contributions here, as we do not possess the 
long unforced control simulations of the regional model that would be needed. 

The contribution of downscaling to the total uncertainty is shown in Figure 
A2.7, using examples derived from changes in winter precipitation for 2070–
2099 relative to 1961–1990 at several 25 km grid squares. This contribution is 
quantified by comparing the spread found in downscaled probabilistic projections 
when the residual variance is either included or excluded. The other uncertainty 
contributions are obtained as described in the discussion of Figures A2.5 and 
A2.6 above. At three of the featured locations the contribution of downscaling 
uncertainty is relatively small (less than 10%). In three further cases a larger but 
still secondary contribution is made to the total spread in the projections (in the 
range 12–19%). Downscaling uncertainties are modest where there is a strong 
relationship between the global and regional model changes, indicating that 
most of the total uncertainty arises from larger scale climate processes resolved in 
the global climate model simulations. However, downscaling uncertainty makes 
a large contribution at one of the featured locations (48%, over the Cairngorm 
mountains). This is a region where the relationship between changes in the 
regional and global models is weaker (Figure A2.7 cf. Figure 3.9), indicating 
that the localised precipitation anomalies are influenced strongly by fine scale 
variability generated within the regional model, and not so strongly (compared to 
other locations) by changes driven by larger scale processes resolved by the global 
model. A detailed examination of the mechanisms of downscaling uncertainty 
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Figure A2.7: Contributions to the 
uncertainty in winter precipitation 
changes for 2070–2099 relative to 
1961–1990, at selected 25 km grid squares. 
Contributions are calculated as in Figures 
A2.5 and A2.6, and also include that due 
to downscaling from global climate model 
grid squares to regional climate model 
grid squares (see text for details). 

is left to future work; however, a good example would be local enhancements 
or reductions in precipitation caused by the effects of mountains or coastlines. 
These local modifications vary substantially between the different members 
of our regional model ensemble in some regions, due partly to differences in 
the projected changes in the regional atmospheric circulation. The results of 
Figure A2.7 demonstrate that the contribution of downscaling uncertainty 
can vary significantly from region to region. The contribution also varies with 
future period, tending to be larger for relatively near-term projections (e.g. for 
2010–2039) compared with projections for the end of the coming century (not 
shown). This is because our metric of downscaling uncertainty does not (typically) 
increase proportionately as the forced response increases in the global model 
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(see Figures 3.9 and 3.10, noting the scatter of the changes about the regression 
lines), suggesting that much of it may arise from locally generated internal 
variability. Further examples will be given on the UKCP09 website (see http://
ukclimateprojections.defra.gov.uk). Finally, we note that our analysis relates 
specifically to uncertainties quantified by the downscaling strategy chosen for 
UKCP09, and does not consider potential additional uncertainties associated with 
the structural assumptions made in the approach (see Section 3.2.11).

A2.5 Summary

The UKCP09 probabilistic projections provide expressions of the relative 
likelihood of different future outcomes for 21st century climate, obtained by 
sampling uncertainties in physical and biogeochemical processes as represented 
in the current generation of climate models, and combining these with a set of 
observational constraints and expert judgements in order to provide estimates 
of the credibility of different outcomes conditioned on present knowledge. In 
this sense the resulting probabilities are effectively summary statements of the 
information from climate modelling and observations. However, they are also 
conditional on the choice of method and its associated assumptions. In this Annex 
we have explored the sensitivity of the results to reasonable variations in a few of 
our most important assumptions, and have shown that the projections are robust 
to them for several examples. These involved changes in 30-yr averages of surface 
temperature and precipitation in several regions of the world, and changes in a 
typical warmest day of summer over South East England (see Figures A2.1–A2.3). 

We also provided examples of how the total uncertainty expressed in the UKCP09 
projections is broken down into a number of distinct components arising from 
different aspects of the methodology. The component termed parameter 
uncertainty (dominated by uncertainties in atmospheric processes sampled 
in our perturbed physics ensemble simulations) generally provides the largest 
contribution. However, the other components (carbon cycle processes, internal 
variability, structural model uncertainties, timescaling and downscaling) all 
provide significant contributions as well, hence no single component dominates 
the total uncertainty. This important result reduces the extent to which an 
individual assumption (relevant to one specific component of uncertainty) is likely 
to affect the overall spread of outcomes found in the projections, thus helping to 
explain why they are found to be robust in the reported sensitivity tests. Despite 
this, it remains imperative that efforts should be made to reduce uncertainties 
in all of the categories considered here. In this context, we comment below 
on prospects for achieving this through future work (see also the discussion in 
Section 3.3).

•	 Internal variability in climate projections is inevitable, and to some extent 
represents an irreducible component of uncertainty. However, recent results 
suggest there is potential to predict some aspects of internal variability out 
to a decade or more ahead, by initialising climate model projections using 
estimates of current observed climate anomalies in the ocean (Smith et 
al. 2007; Keenlyside et al. 2008), rather than the current practice of using 
random initial states typical of pre-industrial conditions.

•	 Timescaling uncertainty could in principle be removed. This would require 
future versions of our methodology to be based upon very large ensembles 
of projections of time-varying climate change carried out using the model 
configuration in which the atmosphere is coupled to a dynamical three-
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dimensional ocean module. This would remove the necessity to estimate the 
results of such an ensemble from simulations of the equilibrium response to 
doubled carbon dioxide carried out using a simple mixed layer representation 
of the ocean. In practice, prospects for achieving this will depend on the 
level of available computing resources relative to the cost of running future 
climate models.

•	 Parameter uncertainty can be reduced by developing better climate models. 
This is a long term, ongoing task, to which significant resources are being 
devoted in the Met Office Hadley Centre. An additional route is through 
the development of improved observational constraints. This could be 
achieved by developing metrics which test the ability of climate models to 
simulate relevant physical processes in a more detailed manner (e.g. Williams 
et al. 2005). More effective ensemble designs could also help, by reducing 
errors associated with emulation of climate model results for parameter 
combinations at which we lack a climate model simulation.

•	 Structural uncertainty could be reduced by a worldwide improvement in 
the quality of climate models, assuming that such developments lead to a 
narrowing of the spread of systematic biases found in different models. It is also 
possible, however, that improvements in models could lead to a broadening 
of structural uncertainty. This could happen, for example, if developments 
in spatial resolution or in the parameterisation of physical processes were to 
lead to the discovery that climate change feedbacks are more uncertain than 
currently thought, because current models underestimate the potential role 
of certain processes (see Annex 3).

•	 Carbon cycle uncertainty is a major source of uncertainty in projections 
of globally averaged temperature, and hence on the UKCP09 projections, 
through their links with global temperature. Improved understanding 
and modelling of terrestrial and oceanic ecosystem processes would help 
to reduce this component of uncertainty. In UKCP09 there is no formal or 
comprehensive use of observations to constrain carbon cycle feedbacks 
(though a simple metric based on historical global carbon cycle budgets is used 
to rule out a small subset of the available model projections). Development 
of a more sophisticated and comprehensive approach (such as the approach 
taken in UKCP09 to constrain projections according to their representations 
of physical climate system processes) could therefore also help to reduce 
uncertainties associated with carbon cycle processes.

•	 Downscaling uncertainty consists of: (i) a combination of internal variability 
generated at fine scales in regional climate model simulations (independent of 
the larger scale information supplied by the driving global model simulations); 
plus (ii) uncertainty in the component of the fine scale response controlled 
by the global model inputs. In principle the need for a specific downscaling 
strategy could be removed, by basing future projections entirely on global 
climate model simulations run at the spatial resolution for which users 
require projections. This would remove the component of uncertainty arising 
from type (ii), and would subsume type (i) into the global model simulations. 
In practice, however, this will not be feasible for the foreseeable future, so 
we anticipate a continuing need for downscaling methods. Downscaling 
uncertainties of type (ii) could potentially be reduced by investigating more 
sophisticated regression techniques which allow the regional model changes 
to be inferred more accurately from global model variables. Note also that 
the UKCP09 method does not support the use of observations of fine-scale 
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aspects of climate to constrain the detail added to the projections through 
downscaling (which could reduce the uncertainty if included), and also omits 
any consideration of structural errors associated with downscaling (which 
could increase the uncertainty). Addressing these limitations would require 
larger ensembles of regional climate model simulations, including some made 
using regional models from other modelling centres (e.g. Christensen et al. 
2007), and hence containing different structural assumptions from those 
employed in the perturbed physics ensemble of Met Office model variants. 

In Section 2 of this Annex we describe the nature of the assumptions involved in 
the UKCP09 methodology, recognising that some of these (as in any probabilistic 
climate projection method) cannot be tested, due to limitations of current 
knowledge or resources. It is important to note that the UKCP09 probabilistic 
projections are conditional upon these assumptions; however, there is scope for 
future work to address some of them. For instance, with extra computational 
resource the design of our ensembles of model projections can be improved to 
sample interactions at a regional level between uncertain processes in different 
modules of the Earth System. With this in mind, an ensemble of projections 
is currently being developed in which parameters controlling uncertain at-
mospheric, terrestrial ecosystem, sulphur cycle and ocean transport processes 
are perturbed simultaneously, in order to assess the extent to which neglect of 
interactions between (say) regional atmospheric and carbon cycle feedbacks 
could affect the projected changes.
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Annex 3: Strengths and  
weaknesses of climate models

In this annex we discuss some generic aspects of climate modelling, 

including strengths and weaknesses of climate models. These 

are illustrated by discussion of some of the recent hot topics in 

modelling, such as the ability of models to simulate modes of 

climate variability and phenomena such as atmospheric blocking 

(periods when high pressure dominates the weather and how 

they might impact the signal of climate change). While in no way 

comprehensive, it should give a flavour of the type of research 

which is ongoing in improving our ability to model, understand 

and predict climate change.

A3.1 What are climate models?

We can describe the climate system using mathematical equations derived from 
well established physical laws that capture the evolution of winds, temperatures, 
ocean currents, etc. Computers are used to solve the equations in order to resolve 
all the complex interactions between components and processes and produce 
predictions of future climate change (see Chapter 2, Box 2.1 for more information). 
The core computer code for the atmosphere component of the Met Office climate 
models is the same as that used to make daily predictions of weather.

The equations of climate are, in the case of the Met Office model, solved by 
dividing the world up on a grid which follows lines of longitude and latitude 
and extends above the surface of the Earth and below the oceans (see Figure  
2.4). Physical properties such as temperature, rainfall and winds evolve in time on 
this grid, and these short time scale variations are averaged together to produce 
climate averages (monthly means, for example). Because the time-variation of 
atmospheric and oceanic motions is chaotic, it is not possible to reproduce the 
exact time variation of the real-world weather and climate (it is chaotic behaviour 
which limits weather forecast accuracy to about a week). Rather the model is 
representative of one possible trajectory the system may take. This “uncertainty 
due to natural variability”, is one aspect of the uncertainty captured in the PDFs 
presented in this report.

Mat Collins, Simon Brown,  
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Met Office Hadley Centre




