

Nuneaton and Bedworth Borough Council

2025 Annual Status Report

August 2025

Document Control Sheet

Identification								
Client	Nuneaton and Bedworth Borough Council							
Document Title	Nuneaton and Bedworth Borough Council – 2025 Annual Status Report							
Bureau Veritas Ref No.	AIR26333680							

	Contact Details	
Company Name	Bureau Veritas UK Limited	Nuneaton and Bedworth Borough Council
Contact Name	Hannah Pearson	Sara Warne
Position	Senior Consultant	Technical Officer
Address	2 nd Floor Atlantic House, Atlas Business Park, Manchester, M22 5PR	Town Hall Coton Road Nuneaton CV11 5AA
Email	hannah.pearson@bureauveritas.com	sara.warne@nuneatonandbedworth.gov.uk

Version Control											
Version	Date	Author	Status								
V1.0	03/07/2025	L Stevens	Draft								
V1.1	08/07/2025	L Stevens	Comments Addressed								
V2.0	14/08/2025	L Stevens	Inclusive of Public Health Sign off								

	Name	Job Title	Signature
Prepared By	L Stevens	Junior Consultant	L. Stevens
Approved By	H Pearson	Senior Consultant	H Pearson

© Bureau Veritas UK Limited

The copyright in this work is vested in Bureau Veritas UK Limited, and the information contained herein is confidential. This work, either in whole or in part, may not be reproduced or disclosed to others or used for any purpose, other than for internal client evaluation, without Bureau Veritas' prior written approval.

Bureau Veritas UK Limited, Registered in England & Wales, Company Number: 01758622

Registered Office: Suite 206 Fort Dunlop, Fort Parkway, Birmingham B24 9FD

2025 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management, as amended by the Environment Act 2021

Date: August 2025

Information	Nuneaton and Bedworth Borough Council Details			
Local Authority Officer	Sara Warne			
Department	Environmental Protection Team, Environment and Enforcement			
Address	Town Hall Coton Road Nuneaton CV11 5AA			
Telephone	02476 376 405			
E-mail	envhealth@nuneatonandbedworth.gov.uk			
Report Reference Number	AIR 26333680			
Date	August 2025			

Local Responsibilities and Commitment

This ASR was prepared by the Environmental Health Department of Nuneaton and Bedworth Borough Council with the support and agreement of the following officers and departments:

Environmental Protection Team

This ASR has been approved by:

- WCC Transport Planner for Walking, Cycling and Wheeling
- WCC Project and Programme Management Team
- NBBC Licensing Officers
- WCC Strategy and Policy Team, Transport
- WCC Road Safety Education Officer
- WCC Transport Planning (Active Travel) Team
- NBBC Home Energy Efficiency Officers

This ASR has been signed off by a Director of Public Health for Warwickshire County Council – Dr Shade Agboola.

If you have any comments on this ASR, please send them to Sara Warne at:

Environmental Protection,

Nuneaton and Bedworth Borough Council,
Town Hall,
Coton Road,
Nuneaton,
CV11 5AA
02476 376 405
envhealth@nuneatonandbedworthgov.uk

Executive Summary: Air Quality in Our Area

Air Quality in Nuneaton and Bedworth

Breathing in polluted air affects our health and costs the NHS and our society billions of pounds each year. Air pollution is recognised as a contributing factor in the onset of heart disease and cancer and can cause a range of health impacts, including effects on lung function, exacerbation of asthma, increases in hospital admissions and mortality.

Air pollution particularly affects the most vulnerable in society, children, the elderly, and those with existing heart and lung conditions. Low-income communities are also disproportionately impacted by poor air quality, exacerbating health and social inequalities.

Table ES 1 provides a brief explanation of the key pollutants relevant to Local Air Quality Management and the kind of activities they might arise from.

Table ES 1 - Description of Key Pollutants

Pollutant	Description
Nitrogen Dioxide (NO ₂)	Nitrogen dioxide is a gas which is generally emitted from high- temperature combustion processes such as road transport or energy generation.
Sulphur Dioxide (SO ₂)	Sulphur dioxide (SO ₂) is a corrosive gas which is predominantly produced from the combustion of coal or crude oil.
Particulate Matter (PM ₁₀ and PM _{2.5})	Particulate matter is everything in the air that is not a gas. Particles can come from natural sources such as pollen, as well as human made sources such as smoke from fires, emissions from industry and dust from tyres and brakes. PM ₁₀ refers to particles under 10 micrometres. Fine particulate matter or PM _{2.5} are particles under 2.5 micrometres.

Air pollution within Nuneaton and Bedworth is predominantly caused by road traffic emissions. Within the borough, there is currently one Air Quality Management Area (AQMA), Midland Road / Corporation Street AQMA (AQMA 2) designated for exceedances of the annual mean objective for NO₂. The details and map of the AQMA can be found in Section 2.1 and Appendix D. Additionally, the boundary of the AQMA can be viewed online

at <u>Local Authority Details - Defra, UK</u>. In May 2025, the Leicester Road Gyratory AQMA (AQMA 1) was revoked due to continued compliance for over ten years.

Across the entire diffusion tube network, NO_2 annual mean concentrations reduced slightly by an average of 0.07 μ g/m³ and 81% of sites recorded a decrease in concentration in comparison to 2023. This indicates that air quality in the borough has generally improved.

Actions to Improve Air Quality

Whilst air quality has improved significantly in recent decades, there are some areas where local action is needed to protect people and the environment from the effects of air pollution.

The Environmental Improvement Plan¹ sets out actions that will drive continued improvements to air quality and to meet the new national interim and long-term targets for fine particulate matter (PM_{2.5}), the pollutant of most harmful to human health. The Air Quality Strategy² provides more information on local authorities' responsibilities to work towards these new targets and reduce fine particulate matter in their areas.

The Road to Zero³ details the Government's approach to reduce exhaust emissions from road transport through a number of mechanisms, in balance with the needs of the local community. This is extremely important given that cars are the most popular mode of personal travel and the majority of AQMAs are designated due to transport emissions.

Nuneaton and Bedworth Borough Council have a number of ongoing initiatives and strategies in place to improve local air quality.

In February 2024, Warwickshire County Council (WCC) approved the <u>Warwickshire Local Cycling and Walking Infrastructure Plan (LCWIP)</u> which strives to encourage walking, cycling and wheeling through creating an attractive and safe environment. This aims to reduce vehicle emissions through increased use of active travel modes. Due to a lack of funding, project delivery has not been progressed throughout 2024. However, the County Council are keen to progress active travel infrastructure in the borough with important

¹ Defra. Environmental Improvement Plan 2023, January 2023

² Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023

³ DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018

routes within the town centre of Nuneaton such as A47 Longshoot, A47 Hinckley Road and A444 Weddington Road being explored.

Further information promoting active travel can be found on the WCC website here.

WCC are working to deliver numerous initiatives focused on improving local air quality. This includes the WCC Road Safety Education Team who continue to deliver the programme, at no cost, to all primary schools within the county. This programme launched in 2017 and aims to provide children with the essential knowledge and skills for safe and active travel. This has co-benefits through its positive impact on both young people's wellbeing and the local air quality. During the 2024-2025 academic year,18 schools in Nuneaton and Bedworth received road safety education at key points throughout the year.

WCC Road Safety Education team are working with Chetwynd Junior School to establish a Park & Stride scheme. This initiative encourages families to park a short distance from the school and complete the remainder of the journey on foot. This therefore aims to reduce congestion and increase safety within the school proximity. The initiative is promoted to all schools with support offered through the Safe and Active Schools programme.

The Clean Air and Cars Idling Campaign aims to encourage school participation for Clean Air Day. WCC's Road Safety Education Team provides schools with a range of resources aimed at reducing vehicle idling. Nine schools within the borough have agreed to participating in such activities.

Electric Vehicle Charging Infrastructure:

- £3.295 million funding from the Local Electric Vehicle (LEVI) will be used to install over 700 fast charge points and 50+ rapid charge points across the county towards the end of 2025 and start of 2026.
- During 2024, there were no EV charge point installations by the council, however
 95 new charge points were installed privately.
- Resident engagement is encouraged through the dedicated <u>EV web pages</u> and suggests for future locations of the EV charging points are welcomed. WCC are also trialling cable protectors to enable home charging on terraced streets.

Electric Buses

 WCC, in collaboration with Coventry City Council and the Combined Authority, have secured funding through several schemes to deliver additional EV buses and associated charging infrastructure. This includes the Stagecoach Midland Grant Agreement and Delivery Programme, the Warwickshire Zero Emission Bus Regional Area 2 (DfT ZEBRA 2) capital grant and the Coventry All -Electric Bus Scheme. Additionally, Gantry-based charging infrastructure and supporting electrical works are to be installed within the Nuneaton bus depot.

- Within the borough, 41 new zero-emission buses are expected to be operational by July 2025, with 18 already in operation.
- National Express also operate 150 electric buses with some routes travelling through Nuneaton and Bedworth.

Taxi Policy

- The Taxi Policy came into effect in October 2023.
- Since then, Nuneaton and Bedworth Borough Council no longer accepts vehicle licence applications for hackney carriages and private hire vehicles that are Euro 4 or lower.
- In 2024, the council issued 273 hackney carriages and 125 private vehicle licences.
- This policy is in place to ensure that high polluting vehicles are replaced by lower emission, cleaner vehicles.

Improvements to Nuneaton and Bedworth Borough Council's Fleet

- The council are procuring route optimisation software to reduce miles travelled by waste collection vehicles.
- Orders for new waste collection vehicles have been made to replace the older, emitting vehicles and subsequently reduce emissions.

Control Domestic Emissions

• During 2024, the following domestic control services were completed: 1 loft insulation, 1 cavity wall insulation, 10 solar panels, 4 air source heat pumps and 2 high retention storage heaters. This was funded through the Home Upgrade Grant Phase 2 (HUG2) government-funded scheme which is aimed at improving energy efficiency for private sector housing. There have not been as many funded insulations in the private sector compared to previous years. However, it is anticipated that more installations will be completed in 2025 once the Warm Homes Grant funding is allocated by central government.

- The energy efficiency of NBBCs own housing stock has been improved with 143 full heating systems installed, 7 boilers changed, and 10 loft insulations completed in 2024.
- As part of the Social Housing Decarbonisation Fund (SHDF) Wave 2.1, an additional 75 houses have benefited from external wall insulation and 75 have received loft top up insulation in 2024.

Nuneaton and Bedworth's <u>Air Quality Supplementary Planning Guidance</u> has been adopted and is being implemented. The council are working closely with Warwickshire Public Health, mainly through the Warwickshire and Coventry Air Quality Alliance. Discussions are ongoing with the Development Control Officers, to develop Planning Policy for the allocation of damage costs money obtained through the planning process to guide projects striving to improve air quality.

As part of the <u>A444 Corridor Improvements project</u>, works were completed during the summer of 2024 to replace a historical congested roundabout with a signalised junction at Heath End Road/Greenmoor Road/Bullring junction. This work has improved this strategic gateway to Nuneaton, managed the flow of traffic, provided highway capacity, network resilience and the provision of pedestrian/cyclist infrastructure.

Conclusions and Priorities

In 2024, there was a general trend of reducing annual mean NO₂ concentrations across the network with 81% of sites recording a reduced concentration when compared to 2023. There were no exceedances of the annual objective of 40 μ g/m³ with the highest concentration of 30.8 μ g/m³ recorded at NB29 and NB56.

The AQMA 1 (Leicester Road Gyratory) was revoked in May 2025 due to continued compliance for over 10 years. Within AQMA 2 (Midland Road / Corporation Street), there was an overall decrease in concentrations from 2023 to 2024. Additionally there were no concentrations recorded within 10% or in exceedance of the annual objective indicating that there have now been five consecutive years of compliance since 2020. Nuneaton and Bedworth Borough Council plan to proceed with revoking this AQMA.

Within the borough there are numerous strategies and initiatives in place which aim to continue to improve the local air quality and ensure public health. There is a focus on promoting active travel and alternatively fuelled vehicles to reduce vehicular emissions through minimising car dependency and encouraging sustainable travel modes. These key

priorities are further explored within the Nuneaton and Bedworth Borough Council Air Quality Action Plan (AQAP).

How to get Involved

With vehicle emissions being the predominant source of air pollution in Nuneaton and Bedworth, it is important for members of the public to consider ways they can switch to more sustainable modes of transport including making use of public transport, walking or cycling, car or lift sharing, and considering low emission vehicles.

WCC are looking at progressing the <u>Warwickshire Local Cycling and Walking</u>
<u>Infrastructure Plan (LCWIP)</u> further by expanding the active travel infrastructure within Nuneaton and Bedworth. This will allow members of the public to have great accessibility to alternative travel options.

The county council's Active Travel and Road Safety Education team are also delivering numerous initiatives focused on improving local air quality through encouraging young people to participate in sustainable transport methods. These include the 'Park and Stride' scheme and the <u>Safe and Active Schools programme</u>.

Additionally, with many individuals in the borough making very similar journeys daily, the <u>Warwickshire community carshare</u> page can be used to reduce both congestion and vehicular emissions.

Further information promoting active travel can be found on the WCC website here.

Table of Contents

Local Responsibilities and Commitment	i
Executive Summary: Air Quality in Our Area	iii
Air Quality in Nuneaton and Bedworth	ii
Actions to Improve Air Quality	iii
Conclusions and Priorities	vi
How to get Involved	vii
1 Local Air Quality Management	1
2 Actions to Improve Air Quality	2
2.1 Air Quality Management Areas	2
2.2 Progress and Impact of Measures to address Air Quality in Nuneaton and Bedworth Borough Council	
2.3 PM _{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations	10
Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance	12
3.1 Summary of Monitoring Undertaken	12
3.1.1 Automatic Monitoring Sites	12
3.1.2 Non-Automatic Monitoring Sites	12
3.2 Individual Pollutants	13
3.2.1 Nitrogen Dioxide (NO ₂)	13
Appendix A: Monitoring Results	17
Appendix B: Full Monthly Diffusion Tube Results for 2024	28
Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/O	QC 32
New or Changed Sources Identified Within Nuneaton and Bedworth Borough Council During 2024	
Additional Air Quality Works Undertaken by Nuneaton and Bedworth Borough Council During 2024	
QA/QC of Diffusion Tube Monitoring	32
Diffusion Tube Annualisation	33
Diffusion Tube Bias Adjustment Factors	
NO ₂ Fall-off with Distance from the Road	35
Appendix D: Map(s) of Monitoring Locations and AQMAs	36
Appendix E: Summary of Air Quality Objectives in England	41
Glossary of Terms	42
References	43

Figures

Figure A.1 – Trends in Annual Mean NO ₂ Concentrations - Leicester Road Gyratory	
AQMA 1 (Revoked May 2025)	. 24
Figure A.2 – Trends in Annual Mean NO_2 Concentrations – Midland Road / Corporation	
Street AQMA 2	. 25
Figure A.3 – Trends in Annual Mean NO ₂ Concentrations – Outside of AQMAs: Nuneato	on
	. 26
Figure A.4 – Trends in Annual Mean NO ₂ Concentrations – Outside of AQMAs: Bedwor	th
	. 27
Figure C.1 – Bias Adjustment Factor Spreadsheet (06/25)	. 33
Figure D.1 – Map of Non-Automatic Monitoring Site Leicester Road Gyratory AQMA	
(AQMA 1) (Revoked)	. 36
Figure D.2 – Map of Non-Automatic Monitoring Site – Midland Road / Corporation Stree	ŧ
AQMA (AQMA 2)	. 37
Figure D.3 – Map of Non-Automatic Monitoring Site – South Nuneaton	. 38
Figure D.4 – Map of Non-Automatic Monitoring Site – North Nuneaton	. 39
Figure D.5 – Map of Non-Automatic Monitoring Site – Bedworth	. 40
Tables	
Table 2.1 – Declared Air Quality Management Areas	3
Table 2.2 – Progress on Measures to Improve Air Quality	7
Table 3.1 – Changes in Nitrogen Dioxide Levels at Non-Automatic Monitoring Sites	
Between 2023 – 2024	. 15
Table A.1 – Details of Non-Automatic Monitoring Sites	. 17
Table A.2 – Annual Mean NO ₂ Monitoring Results: Non-Automatic Monitoring (μg/m³)	. 20
Table B.1 – NO ₂ 2024 Diffusion Tube Results (µg/m³)	. 28
Table C.1 – Planning Applications with Air Quality Conditions in 2024	. 31
Table C.2 – Annualisation Summary (concentrations presented in µg/m³)	. 33
Table C.3 – Bias Adjustment Factor	. 34
Table E.1 – Air Quality Objectives in England	. 40

1 Local Air Quality Management

This report provides an overview of air quality in Nuneaton and Bedworth Borough Council during 2024. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995), as amended by the Environment Act (2021), and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in order to achieve and maintain the objectives and the dates by which each measure will be carried out. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Nuneaton and Bedworth Borough Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England are presented in Table E.1.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 18 months. The AQAP should specify how air quality targets will be achieved and maintained and provide dates by which measures will be carried out.

A summary of AQMAs declared by Nuneaton and Bedworth Borough Council can be found in Table 2.1. The table presents a description of the one AQMA that is currently designated within Nuneaton and Bedworth Borough Council. Appendix D: Map(s) of Monitoring Locations and AQMAs provides a map of the AQMA and also the air quality monitoring locations in relation to the AQMA. The air quality objectives pertinent to the current AQMA designation are as follows:

• NO₂ annual mean

In May 2025, the Leicester Road Gyratory AQMA (AQMA 1) was revoked after more than 10 years of compliance.

Work to revoke the Midland Road / Corporation Street AQMA (AQMA 2) will progress in 2025, as concentrations have been compliant for five consecutive years since 2020 (see Section 3).

Table 2.1 - Declared Air Quality Management Areas

AQMA Name	Date of Declaration	Pollutants and Air Quality Objectives	One Line Description	Is air quality in the AQMA influenced by roads controlled by Highways England?	Level of Exceedance: Declaration	Level of Exceedance: Current Year	Number of Years Compliant with Air Quality Objective	Name and Date of AQAP Publication	Web Link to AQAP
AQMA 2 – Midland Road / Corporation Street, Nuneaton	Declared 01/10/2009	NO₂ Annual Mean	Centred on Midland Road and Corporation Street but also includes parts of Central Avenue and Manor Court Road	NO	53 μg/m³	30.8 μg/m³	5	Nuneaton and Bedworth Borough Council, Air Quality Action Plan 2022	Link to AQAP

[☑] Nuneaton and Bedworth Borough Council confirm the information on UK-Air regarding their AQMA(s) is up to date.

[☑] Nuneaton and Bedworth Borough Council confirm that all current AQAPs have been submitted to Defra.

2.2 Progress and Impact of Measures to address Air Quality in Nuneaton and Bedworth Borough Council

Defra's appraisal of last year's ASR concluded the report is well structured, detailed, and provides the information specified in the Guidance. The following comments are designed to help inform future reports:

1. Table 2.1 in the Excel ASR table spreadsheet is not filled in completely. This needs to match what is in Table 2.1 in the ASR report. The Council should amend this.

This has been acknowledged.

2. The Council should continue with the revocation process of AQMA 1 and report progress in the 2025 ASR. Monitoring should continue at site AQM to highlight the possible impacts of housing development(s) surrounding the AQMA. Where possible, details of the housing development(s) and any submitted air quality assessments could be included in future ASRs to support the decision to revoke the AQMA.

This has been addressed with AQMA 1 being revoked in May 2025.

3. Graphs highlighting the trends of monitored concentrations at diffusion tube sites have been provided. These are clear and well-formatted. It may be useful to include a line highlighting the annual mean objective for an easy comparison.

This has been acknowledged.

4. Clear figures have been provided demonstrating the locations of AQMAs and monitoring sites. Monitoring sites are easy to distinguish, and the labels are clear to read. The Council should continue the good work for future ASRs.

This has been acknowledged.

The Council have addressed the comments from the previous ASR appraisal.
 This demonstrates good practice, and the Council should continue to address all future appraisal comments in future reports.

This has been acknowledged.

6. Overall, the report is well structured and provides a good amount of detail. The Council is commended for their hard work in improving air quality across the Borough.

This has been acknowledged.

Nuneaton and Bedworth Borough Council has taken forward a number of direct measures during the current reporting year of 2024 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. There are five measures included within Table 2.2, with the type of measure and the progress Nuneaton and Bedworth Borough Council have made during the reporting year of 2024 presented. Where there have been, or continue to be, barriers restricting the implementation of the measure, these are also presented within Table 2.2.

More detail on these measures can be found in <u>Nuneaton and Bedworth Borough</u> <u>Council's AQAP published in 2022</u>. The AQAP aims to address air quality through the following key measures:

- Support and Collaborate with WCC on Traffic Management Measures Directly Impacting Midland Road.
- Promote Behaviour Change away from Single Occupancy Private Vehicle Use.
- Promote the use of Alternatively Fuelled Vehicles.
- Develop Policies to Support Better Air Quality.
- Control Domestic Emissions.

Nuneaton and Bedworth Borough Council's priorities for the coming year are:

- Promoting behaviour change away from single occupancy private vehicle use through numerous strategies including promotion of cycling and walking, school and workplace travel plans and active travel campaigns and infrastructure.
- Promoting the use of alternatively fuelled vehicles through increasing the number of electric vehicles charging points. WCC are working to deliver charge points across the county with installations anticipated to commence by the end of 2025.
- Control domestic emissions through home energy efficiency improvements. It is anticipated that more installations will be completed within 2025 after the Warm Homes Grant funding is allocated by Central Government.

Nuneaton and Bedworth Borough Council worked to implement these measures in partnership with the following stakeholders during 2024:

- Warwickshire County Council;
- Warwickshire County Council Highway Authority;
- Consultant in Public Health, Warwickshire; and
- Transforming Nuneaton team.

The principal challenges and barriers to implementation that Nuneaton and Bedworth Borough Council anticipates facing are capacity for staff to work on implementing measures, and the limitations of funding which are required to implement or complete projects such as the Transforming Nuneaton (TFN) project. TFN originally incorporated significant road improvements to help with traffic flow and cycling but has seen significant funding sources reallocated or withdrawn. The project is progressing and new funding sources being sourced by WCC.

Nuneaton and Bedworth Borough Council anticipates that the measures stated above and in Table 2.2 will help to continue to achieve compliance across the borough and within the AQMA 2 Midland Road / Corporation Street, Nuneaton.

Table 2.2 – Progress on Measures to Improve Air Quality

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
1	Promote Behaviour Change away from Single Occupancy Private Vehicle Use	Promoting Travel Alternatives	Encourage/ facilitate home working, active travel campaign & infrastructure, Personalised Travel Planning, Promotion of Cycling, Promotion of Walking, School Travel Plans, Workplace Travel Planning	Ongoing and 2021 onwards	Ongoing for the measure as a whole,	WCC and NBBC	WCC	Ongoing	>£10 million for all aspects of the measure	Ongoing projects	n/a – strategic measure which will also assist in achievement of air quality objective in AQMA	Monitoring strategy for LTP	Ongoing work with schools and businesses, and travel plans through planning system. Warwickshire's Local Cycling and Walking Infrastructure Plan (LCWIP) was approved by the County Council in February 2024. This County wide plan aims to create a safe and attractive environment for walking, wheeling and cycling, so that these modes become the natural choices for shorter journeys and outdoor recreation. Due to lack of funding there has been no delivery of projects during 2024, however, WCC are looking to progress active travel infrastructure across NBBC. WCC are keen to progress some important corridor routes within the town centre area of Nuneaton (A47 Longshoot, A47 Hinckley Road and A444 Weddington Road) and are exploring opportunities to top up required funding to enable delivery. Additional schemes are in the pipeline as part of the local planning growth, using funding secured through s106, but are not yet in the public domain. Information promoting active travel (walking, wheeling and cycling) can be found on WCC website. Including, active travel maps, cycle training and active travel schemes. WCC Active Travel team are delivering various initiatives which have a positive impact on air quality, as detailed below; WCC's Road Safety Education Team continues to deliver the Safe and Active Schools programme at no cost to all primary schools across the county. Since its launch in 2017, the programme has aimed to equip children with the essential knowledge and skills needed to travel safely and actively. Promoting active travel—such as walking, cycling, and scooting—enhancing children's physical, mental health and social wellbeing. This aligns with the priorities of the UK Government, WCC, and local schools. The programme emphasises the importance of providing comprehensive road safety education, training, and practical support as a foundation before encouraging active travel behaviours. During the 2024–2025 academic year, 18 schools in Nuneaton and Bedworth received road safety education at key points	A number of initiatives across the borough encourage walking and cycling, these are not costed specifically as they are wider measures to reduce emissions. The main barrier for delivery of LCWIP projects in NBBC are due to funding being reallocated to the Physical Activity Hub in Bedworth and lack of stakeholder support for A47 schemes. Elections and the recent change of political party at WCC have further halted progress in 2025. The delay and the lack of a WCC Portfolio Holder being named for Transport and Planning is also currently a barrier to deliver. WCC transport team are ready to discuss their active travel aspirations for NBBC, and to proceed with the schemes they want to deliver. The TNP incorporates cycling infrastructure improvements, but reallocation of funds means that several planned schemes have been halted.
2	Promote the use of Alternatively Fuelled Vehicles	Promoting Low Emission Transport	Priority Parking for LEVs, procuring alternative refuelling infrastructure to promote Low Emission Vehicles, EV recharging, Gas fuel recharging, taxi emission incentives, taxi licensing conditions	Ongoing and 2021 onwards	Ongoing with aim to become carbon neutral by 2030	WCC and NBBC	DfT, Office for Low Emission Vehicles (OLEV), Energy Savings Trust (EST), WCC	Ongoing	£1-10 million	Ongoing – some EV charging points already completed	achievement	Proportion of alternatively fuelled vehicles in the fleet on Warwickshire's roads	All new developments are required to have EV charging points in line with the Air Quality SPD. Electric Vehicle (EV) charging points increasing in NBBC as funding will allow. WCC are continuing work to deliver charge points using the £3.295m Local Electric Vehicle (LEVI) funding from Central Government which will be used to rollout charging infrastructure over the next 4 years. Procurement recently closed for this tender and is being evaluated. The total number of charge points and their locations are still to be determined, but WCC's focus is on providing widespread and evenly distributed coverage for the whole county. It is expected that more than 700 fast charge points from this funding, and 50 plus rapid charge points across the whole county will be installed. It is not clear how these will be distributed yet, but it is anticipated that installations will commence the end of 2025 and into the start of 2026. Although WCC have not installed any EV charge points in 2024, lots of other charge point providers have been installed privately. Data from DfT indicates that an additional 95 EV charge points were installed across NBBC	EV charging infrastructure to be implemented over next few years in line with Carbon Reduction Strategy. High cost, but grants and private sector funding available and will be actively targeted.

LAQM Annual Status Report 2025

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
													during 2024. WCC has also adopted an approach that will allow WCC to make parking spaces adjacent to EV charge points 'EV-charging only'. This will make it easier for drivers to access the charge points and hopefully give future EV drivers confidence to swap their vehicles, lowering emissions.	
3	Control Domestic Emissions	Promoting Low Emission Plant	Regulations for fuel quality for stationary and mobile sources	2022	n/a	NBBC	NBBC		<£10K unless a significant project on solid fuel burning is progressed		n/a – strategic measure which will also assist in achievement of air quality objective in AQMA	Level of solid fuel burning	2024 saw the completion of: 1 loft insulation, 1 Cavity wall insulation, 10 solar panels, 4 air source heat pumps and 2 high retention storage heaters. Funded through the Home Upgrade Grant Phase 2 (HUG2) government-funded scheme aimed at improving energy efficiency for Private Sector housing. There have not been as many funded insulations in the private sector compared to previous years, due to procurement. It is anticipated that more installations will be completed in 2025 once the Warm Homes Grant funding is allocated by central government. The energy efficiency of NBBCs own housing stock has been improved by; 143 full heating systems have been installed, 7 boilers changed, and 10 loft insulations completed in 2024. As part of the Social Housing Decarbonisation Fund (SHDF) Wave 2.1 an additional 75 houses have benefited	Very difficult to quantify any change in the level of solid fuel burning without detailed survey work. Cost of measure already within existing budgets. HUG2 funding utilised and awaiting further government funding.
													from external wall insulation and 75 have received loft top up insulation in 2024.	
4	Develop Policies to Support Better Air Quality	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance, Low emission strategy, other policy, regional groups	Ongoing and 2021 onwards	n/a – ongoing collaborative working	NBBC	Mainly from existing budgets at both Borough and County level. Planning system generates funding, which could be used for measures within this Action Plan.	Ongoing	<£10K unless significant projects are progressed	Ongoing, SPD already completed	n/a – strategic measure which will also assist in achievement of air quality objective in AQMA	n/a as no specific projects identified as yet	Air Quality SPD adopted and being implemented. Working closely with Warwickshire Public Health, mainly through the Warwickshire and Coventry Air Quality Alliance. Discussions are ongoing with Development Control Officers, to develop Planning Policy for the allocation of damage costs money obtained through the planning process to projects to improve air quality. In 2024 funding of £3.8 million was secured via the Department for Energy and Net Zero through the Public Sector Decarbonisation Scheme grant, alongside £400,000 from Sport England and a further £470,000 from NBBC to reduce the fossil fuel consumption at the Pingles public Swimming and Leisure Centre, located in Nuneaton. The investment will be used to install new commercial heat pumps to replace existing gas boilers, along with a new air management scheme.	Non statutory function will require additional resources to implement. Staff shortages in Planning and Environmental Health are the main barriers to implementation as statutory duties take priority. This matter will hopefully be addressed in 2025.
5	Support and Collaborate with Warwickshire County Council on Traffic Management Measures Directly Impacting Midland Road	Traffic Management	Strategic Highway Improvements	2021 onwards	The scheme will be phased with the first phase due to be completed 2024. The whole scheme is anticipated to be completed 2025	WCC and NBBC	Developer contribution s, Transformin g Nuneaton project	Funding secured by WCC	>£10 million (including existing programm e)	In planning phase	Reductions large enough to achieve the annual mean NO ₂ at all relevant monitoring locations	Traffic flows on Midland Road, Nuneaton, and resulting nitrogen dioxide concentrations	As part of the A444 Corridor Improvements project, works were completed during the summer of 2024 to replace a historical congested roundabout with a signalised junction at Heath End Road/Greenmoor Road/Bullring junction. Improving this strategic gateway to Nuneaton, managing the flow of traffic, providing highway capacity, network resilience and aid the pedestrian/cyclist infrastructure. The Transforming Nuneaton Programme (TNP) which included significant highway improvement schemes that were predicted to have a positive impact on the Midland Road AQMA (AQMA2) has been subjected to significant funding reductions. This means that the regeneration programme has had to be scaled back. The funding shortfall for the Wheat Street part of the scheme has been plugged from s106 contributions. With detailed design work being completed Spring 2025 and the start of construction anticipated Autumn 2025. The Leicester Road gyratory part of the scheme is progressing. A planning application was submitted in Autumn 2024, land negotiations are ongoing. Providing planning permission is granted detailed design is anticipated to start summer 2025 with demolition of the Empire Gym expected winter 2025 (to make way for the	Upgrades to the Ring Road are high cost. Significant funding that had been secured has been reallocated in cost reduction measures. Some additional funding has been secured from s106 agreements.

LAQM Annual Status Report 2025

Nuneaton and Bedworth Borough Council

Measure No.	Measure Title	Category	Classification	Year Measure Introduced in AQAP	Estimated / Actual Completion Date	Organisations Involved	Funding Source	Funding Status	Estimated Cost of Measure	Measure Status	Reduction in Pollutant / Emission from Measure	Key Performance Indicator	Progress to Date	Comments / Barriers to Implementation
													scheme) Towns fund money originally allocated for the Wheat Street part of the scheme has also been	

LAQM Annual Status Report 2025

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG22 (Chapter 8) and the Air Quality Strategy², local authorities are expected to work towards reducing emissions and/or concentrations of fine particulate matter (PM_{2.5})). There is clear evidence that PM_{2.5} (particulate matter smaller 2.5 micrometres) has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Whilst there are no automatic monitoring stations within the district, DEFRA background map concentrations⁴ can be used as estimates for PM_{2.5} concentrations. For 2024, the average predicted PM_{2.5} concentration was 6.9 μ g/m³ and the highest predicted concentrations was 9.3 μ g/m³ located in the Exhall area of Bedworth, near to Coventry Road. Therefore, estimated background concentrations fall significantly below the annual mean objective of 20 μ g/m³ and below the Environment Act target of 10 μ g/m³, to be achieved by the end of 2040.

The Public Health Outcomes Framework data tool⁵ compiled by Public Health England quantifies the mortality burden of PM_{2.5} within England on a country and local authority scale. The fraction of mortality attributable to PM_{2.5} in Nuneaton and Bedworth (5.4%) is higher than that seen across the West Midlands region (5.1%) and the England average (5.2%).

Nuneaton and Bedworth Borough Council is taking the following measures to address PM_{2.5}:

 NBBC continue to aim to raise awareness of the impacts of woodburning stoves and open fires on local PM_{2.5} concentrations. However, due to a lack of resources and staffing, this has not been possible. The control of domestic emissions has now been written into the 3-year service plan for Environmental Health, which will hopefully give the matter higher importance within the local authority and enable delivery.

⁴ Defra. Background Maps | LAQM

⁵ Public Health Outcomes Framework | Fingertips | Department of Health and Social Care

- Further addressing the above, NBBC endeavour to review the smoke control areas throughout the borough to make sure they incorporate all relevant areas.
- Considering the new interim planning guidance and pending publication of DEFRA guidance, where relevant NBBC are asking applicants to provide evidence that they have identified key sources of air pollution within their schemes and taken appropriate action to minimise emissions of PM_{2.5}.
- Currently work is being undertaken to install an automatic monitoring station for the National PM_{2.5} monitoring network in Bedworth. This is progressing and it is hoped that this will be installed by the end of 2025.
- At the beginning of 2025, NBBC relocated several tubes from the now revoked AQMA 1, to increase monitoring at established residential roads in the vicinity of a large housing strategic housing allocation to the north of Nuneaton (SHA1). Once built out, there will be approximately 1,700 new homes, associated infrastructure, a secondary school and two primary schools. The purpose of relocating the tubes is to determine whether the additional houses and associated traffic are/will have a negative impact on local air quality.
- In 2024, funding of £3.8 million was secured via the Department for Energy and Net Zero through the Public Sector Decarbonisation Scheme grant, alongside £400,000 from Sport England and a further £470,000 from NBBC to reduce the fossil fuel consumption at the Pingles public Swimming and Leisure Centre, located in Nuneaton. The investment will be used to install new commercial heat pumps to replace existing gas boilers, along with a new air management scheme.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

This section sets out the monitoring undertaken within 2024 by Nuneaton and Bedworth Borough Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2020 and 2024 to allow monitoring trends to be identified and discussed.

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

Nuneaton and Bedworth Borough Council does not undertake automatic (continuous) monitoring.

3.1.2 Non-Automatic Monitoring Sites

Nuneaton and Bedworth Borough Council undertook non- automatic (i.e. passive) monitoring of NO₂ at 42 sites during 2024. Table A.1 in Appendix A presents the details of the non-automatic sites.

During 2024, five monitoring sites, NB17, NB18, NB38, NB42 and NB52, were relocated elsewhere within the borough. Site NB17 was consistently missing and therefore no data has been reported for 2024. Site NB18 recorded concentrations below the objective and was located away from residential properties. Site NB38 was removed by the homeowner and due to consistently low concentrations has been relocated for 2025. Sites NB42 and NB52 also recorded consistently low concentrations and have been relocated. Monitoring data is available for months January to March for NB18, NB42 and NB52 and January to April for NB38.

Four new monitoring sites, NB55, NB56, NB57 and NB58, were added to the network in April 2024. The diffusion tubes are located on 70, 123, 201 and 267 Queen Road in Nuneaton outside of the AQMA. This location was chosen due it being a street canyon and busy town centre road with residential properties.

In addition, for the 2025 monitoring period, several tubes which were previously located within AQMA 1 (Leicester Road Gyratory, Nuneaton) have been relocated to increase

monitoring at established roads in the vicinity of a large strategic housing allocation to the North of Nuneaton. This development will deliver 1,700 new homes and associated infrastructure including a secondary school and two primary schools. Therefore, the purpose of relocating the diffusion tubes is to determine the impact of the additional houses and associated traffic on the local air quality. This will be discussed further in next year's ASR.

Maps showing the location of the 2024 monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.1 and Table A.2 in Appendix A compare the ratified and adjusted monitored NO₂ annual mean concentrations for the past five years with the air quality objective of 40µg/m³. Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e. the values are exclusive of any consideration to fall-off with distance adjustment).

For diffusion tubes, the full 2024 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant.

In 2024, the average NO_2 annual mean concentration across the 42 sites was 21.4 μ g/m³, with the highest annual mean concentration of 30.8 μ g/m³ recorded at both NB29 and NB56. Site NB29 is located within the the Midland Road / Corporation Street AQMA (AQMA 2) however site NB56 is a new site for 2024 located on Queens Road outside of the AQMA. This is a slight decrease in comparison to the maximum concentration of 31.6 μ g/m³ recorded at site NB29 in 2023. Therefore, all monitoring locations across the

diffusion tube network reported NO₂ annual mean concentration below the annual mean objective (40 µg/m³).

Table 3.1 shows the changes in NO_2 concentrations at the non-automatic sites between 2023 and 2024. The annual NO_2 mean across the diffusion tube network has decreased by 0.07 μ g/m³ from that recorded in 2023 with a reduction seen at 32 sites (81%) and a slight increase observed at eight sites (19%) from 2023 to 2024 (Table 3.1). Whilst there are some sites that have shown minor increases in NO_2 concentrations from 2023, these are not considered significant increases at these sites but rather the general fluctuations in concentrations that can be seen year on year.

Within the Leicester Road Gyratory AQMA (AQMA 1 – revoked May 2025), the highest annual mean concentration of 27.3 μ g/m³ was recorded at NB23. This represents an increase of 3.6 μ g/m³ in comparison to the 2023 annual mean concentration of 23.7 μ g/m³ recorded at this site. The Leicester Road Gyratory AQMA was revoked in May 2025 due to continued compliance with the AQS for more than 10 years.

Within the Midland Road / Corporation Street AQMA (AQMA 2), the highest annual mean concentration of 30.8 µg/m³ was recorded at NB29. Across all eight sites located within the AQMA, there was an overall decrease in concentrations by 0.3 µg/m³ from 2023 to 2024 Additionally there were no concentrations recorded within 10% or in exceedance of the annual mean objective indicating that there have now been five consecutive years of compliance since 2020. Due to this continued compliance, Nuneaton and Bedworth Borough Council plan to revoke the Midland Road / Corporation Street AQMA.

Throughout 2024, the Bermuda Connection Scheme has been operational, and the Bermuda Bridge has been open to traffic. Therefore, the impact this has had on local air quality during operation can be assessed through concentrations recorded at site NB47. In 2024, the annual mean concentration recorded at NB47 was 12.8 $\mu g/m^3$. This represents a slight decrease when compared to the 2023 monitored concentration of 13.1 $\mu g/m^3$ and the lowest concentration recorded at the site for the past five years. Diffusion tubes NB46 and NB48 are located on the route approaching the Bermuda Bridge. Annual mean NO₂ concentrations for at both sites have shown to reduce slightly in comparison to 2023 concentrations with both sites recording the lowest concentrations relative to the past five years. This highlights that the fully operational bridge has had minimal impact on air quality.

In Figure A.1 and Figure A.2 the trends in annual mean NO₂ concentrations over the past five years (2020 to 2024) at monitoring sites within AQMA 1 (revoked May 2025) and

AQMA 2, respectively are presented. Figure A.3 presents the trend in measured annual mean NO₂ concentrations at the remainder of the monitoring sites located within Nuneaton, while Figure A.4 presents the trend for monitoring sites within Bedworth.

There were no annual mean NO_2 concentration greater than 60 μ g/m³ in 2024, indicating that an exceedance of the 1-hour mean NO_2 objective was highly unlikely.

Table 3.1 – Changes in Nitrogen Dioxide Levels at Non-Automatic Monitoring Sites Between 2023 – 2024.

Diffusion Tube ID	2023 NO₂ Monitoring Result (µg/m³)	2024 NO₂ Monitoring Result (µg/m³)	Difference (µg/m3)	Increase / Decrease between 2023-2024
AQM	23.8	23.7	-0.1	Decrease
NB01	14.6	12.7	-1.9	Decrease
NB02	12.4	11.3	-1.1	Decrease
NB04	23.1	23	-0.1	Decrease
NB06	24.1	23.7	-0.4	Decrease
NB07	23.3	24.3	1.0	Increase
NB09	21	20.4	-0.6	Decrease
NB15	21.1	20.5	-0.6	Decrease
NB18	24.2	22.1	-2.1	Decrease
NB20	20.6	19.8	-0.8	Decrease
NB22	18.5	17.9	-0.6	Decrease
NB23	23.7	27.3	3.6	Increase
NB24	18.1	17.5	-0.6	Decrease
NB25	23.5	23.1	-0.4	Decrease
NB26	23.3	22.9	-0.4	Decrease
NB27	28.5	28.7	0.2	Increase
NB28	27.1	26.6	-0.5	Decrease
NB29	31.6	30.8	-0.8	Decrease
NB30	29.9	30.5	0.6	Increase
NB31	21.0	20.4	-0.6	Decrease
NB35	15.5	13.5	-2.0	Decrease
NB36	24.3	23.2	-1.1	Decrease
NB37	25.6	25.7	0.1	Increase
NB38	21.3	19.4	-1.9	Decrease
NB41	23.2	22.9	-0.3	Decrease
NB42	18.4	17.7	-0.7	Decrease

Diffusion Tube ID	2023 NO ₂ Monitoring Result (μg/m³)	2024 NO ₂ Monitoring Result (μg/m³)	Difference (µg/m3)	Increase / Decrease between 2023-2024
NB43	17.8	17.0	-0.8	Decrease
NB44	21.6	21.0	-0.6	Decrease
NB45	25.0	23.2	-1.8	Decrease
NB46	12.3	12.3	0.0	Decrease
NB47	13.1	12.8	-0.3	Decrease
NB48	16.9	17.3	0.4	Increase
NB49	22.5	21.7	-0.8	Decrease
NB50	24.8	25.0	0.2	Increase
NB51	20.9	21.1	0.2	Increase
NB52	24.2	20.3	-3.9	Decrease
NB53	21.5	20.5	-1.0	Decrease
NB54	12.5	11.9	-0.6	Decrease
NB55	-	28.7	-	-
NB56	-	30.8	-	-
NB57	-	22.8	-	-
NB58	-	21.6	-	-

Appendix A: Monitoring Results

Table A.1 – Details of Non-Automatic Monitoring Sites

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Tube Co- located with a Continuous Analyser?	Tube Height (m)
AQM	AQMonitor, Leicester Rd	Roadside	436844	292251	NO ₂	YES -AQMA 1	1.5	4.2	No	1.3
NB01	142 Norman Avenue	Urban Background	435969	291303	NO ₂	NO	N/A	N/A	No	1.8
NB02	5 Conifer Close	Urban Background	436427	287646	NO ₂	NO	N/A	N/A	No	2.1
NB04	Leisure Ctr 72 Coventry Rd	Roadside	435793	286545	NO ₂	NO	0.0	3.6	No	3.2
NB06	Tudor Ct Bowling Green Ln	Roadside	434313	285292	NO ₂	NO	11.0	0.9	No	2.9
NB07	115 Newtown Rd Bedworth	Roadside	435345	286992	NO ₂	NO	6.0	4.4	No	2.4
NB09	Church, Manor Ct Rd	Roadside	435634	292280	NO ₂	YES -AQMA 2	1.5	2.2	No	2.4
NB15	Bridge Grove, Leicester Rd	Roadside	436883	292302	NO ₂	YES -AQMA 1	8.0	1.4	No	2.3
NB18	Wheat St	Roadside	436525	291863	NO ₂	NO	23.0	4.0	No	2.3
NB20	17 Old Hinckley Rd	Roadside	436604	292202	NO ₂	NO	0.0	6.9	No	2.0
NB22	58 Old Hinckley Rd	Roadside	436810	292306	NO ₂	YES -AQMA 1	0.0	8.8	No	1.9
NB23	46 Leicester Rd Nuneaton	Roadside	436841	292280	NO ₂	YES -AQMA 1	0.0	4.5	No	2.1
NB24	Lodge, 31 Leicester Rd	Roadside	436812	292196	NO ₂	YES -AQMA 1	0.0	11.0	No	2.2

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Tube Co- located with a Continuous Analyser?	Tube Height (m)
NB25	25 Central Avenue	Roadside	435814	292274	NO ₂	YES -AQMA 1	0.0	6.4	No	2.1
NB26	26 Central Avenue	Roadside	435759	292311	NO ₂	YES -AQMA 2	0.0	4.6	No	2.1
NB27	90 Corporation St	Roadside	435950	292113	NO ₂	YES -AQMA 2	0.0	4.8	No	2.4
NB28	138 Corporation St	Roadside	435893	292205	NO ₂	YES –AQMA 2	0.0	4.7	No	2.4
NB29	16 Midland Road	Roadside	435626	292343	NO ₂	YES -AQMA 2	0.0	4.0	No	2.1
NB30	52 Midland Road	Roadside	435554	292378	NO ₂	YES -AQMA 2	0.0	3.8	No	2.1
NB31	376 Longford Road	Roadside	435146	284563	NO ₂	NO	0.0	12.7	No	2.5
NB35	60 Watling St	Roadside	439268	293457	NO ₂	NO	0.0	11.7	No	1.9
NB36	78 Coventry Rd Exhall	Roadside	435217	285246	NO ₂	NO	0.0	2.3	No	2.3
NB37	19 Croft Road Nuneaton	Roadside	435051	291594	NO ₂	NO	0.0	5.8	No	2.0
NB38	115 Highfield Rd	Roadside	437198	290732	NO ₂	NO	0.0	7.2	No	1.8
NB41	11 Newtown Rd (salon)	Roadside	435619	287042	NO ₂	NO	0.0	4.8	No	2.0
NB42	18 George Street Bedworth	Roadside	435655	287135	NO ₂	NO	0.0	8.3	No	1.8
NB43	43 Hanover Glebe	Roadside	436303	290796	NO ₂	NO	0.0	11.6	No	2.0
NB44	503 Heath End Rd	Roadside	434298	290930	NO ₂	NO	2.0	2.3	No	2.2
NB45	80 Heath End Rd	Roadside	435593	290728	NO ₂	NO	4.6	2.5	No	2.4
NB46	30 Bermuda Rd	Roadside	435135	290583	NO ₂	NO	0.0	9.2	No	2.0

Diffusion Tube ID	Site Name	Site Type	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Pollutants Monitored	In AQMA? Which AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Tube Co- located with a Continuous Analyser?	Tube Height (m)
NB47	10 The Bridleway	Roadside	435452	290087	NO ₂	NO	0.0	4.6	No	2.0
NB48	288 Heath End Rd	Roadside	435066	290689	NO ₂	NO	0.0	8.5	No	2.1
NB49	Co-op Coventry Rd	Roadside	435231	285236	NO ₂	NO	0.0	4.2	No	2.5
NB50	66 Coventry Rd Exhall	Roadside	435201	285198	NO ₂	NO	0.0	8.3	No	2.3
NB51	Abbey Green School	Roadside	435638	292357	NO ₂	NO	0.0	5.0	No	2.2
NB52	Bridge St, Mower Shop*	Roadside	436147	290868	NO ₂	NO	3.0	7.2	No	2.2
NB53	McDonnell Drive	Roadside	434846	284736	NO ₂	NO	39.0	16.0	No	2.1
NB54	139 The Long Shoot	Roadside	439049	292781	NO ₂	NO	0.0	17.0	No	2.1
NB55	70 Queens Road	Roadside	435806	291733	NO ₂	NO	1.5	1.5	No	2.4
NB56	123 Queens Road	Roadside	435653	291727	NO ₂	NO	0.0	2.5	No	2.1
NB57	201 Queens Road	Roadside	435455	291748	NO ₂	NO	6.0	1.0	No	2.2
NB58	267 Queens Road	Roadside	435287	291783	NO ₂	NO	0.0	4.0	No	1.9

Notes:

- (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).
- (2) N/A if not applicable.

Table A.2 – Annual Mean NO₂ Monitoring Results: Non-Automatic Monitoring (μg/m³)

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
AQM	436844	292251	Roadside	84.4	84.4	24.5	25.8	25.8	23.8	23.7
NB01	435969	291303	Urban Background	92.2	92.2	14.6	15.5	15.0	14.6	12.7
NB02	436427	287646	Urban Background	100.0	100.0	14.3	14.7	14.0	12.4	11.3
NB04	435793	286545	Roadside	92.5	92.5	26.2	27.0	25.5	23.1	23.0
NB06	434313	285292	Roadside	100.0	100.0	25.1	26.4	26.5	24.1	23.7
NB07	435345	286992	Roadside	83.1	83.0	26.0	26.1	24.8	23.3	24.3
NB09	435634	292280	Roadside	100.0	100	22.8	23.8	24.7	21.0	20.4
NB15	436883	292302	Roadside	90.3	90.3	21.7	23.3	22.2	21.1	20.5
NB18	436525	291863	Roadside	100.0	25.0	24.9	27.1	27.0	24.2	22.1
NB20	436604	292202	Roadside	100.0	100.0	21.3	23.0	22.0	20.6	19.8
NB22	436810	292306	Roadside	100.0	100.0	18.4	20.3	19.9	18.5	17.9
NB23	436841	292280	Roadside	92.5	92.5	24.4	25.9	26.2	23.7	27.3
NB24	436812	292196	Roadside	100.0	100.0	18.0	19.8	19.4	18.1	17.5
NB25	435814	292274	Roadside	100.0	100.0	24.0	25.2	25.9	23.5	23.1
NB26	435759	292311	Roadside	100.0	100.0	22.9	24.8	25.6	23.3	22.9
NB27	435950	292113	Roadside	90.3	90.3	-	-	31.5	28.5	28.7
NB28	435893	292205	Roadside	100.0	100.0	28.5	29.8	30.2	27.1	26.6

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%) (1)	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
NB29	435626	292343	Roadside	100.0	100.0	33.7	35.2	34.5	31.6	30.8
NB30	435554	292378	Roadside	90.3	90.3	33.0	35.2	34.5	29.9	30.5
NB31	435146	284563	Roadside	100.0	100.0	23.5	25.3	23.7	21.0	20.4
NB35	439268	293457	Roadside	82.2	82.2	16.7	16.8	17.6	15.5	13.5
NB36	435217	285246	Roadside	100.0	100.0	26.6	28.1	27.3	24.3	23.2
NB37	435051	291594	Roadside	92.5	92.5	24.8	28.3	27.5	25.6	25.7
NB38	437198	290732	Roadside	100.0	32.1	22.2	23.1	22.7	21.3	19.4
NB41	435619	287042	Roadside	91.9	91.9	24.9	27.1	25.2	23.2	22.9
NB42	435655	287135	Roadside	100.0	25.0	20.5	21.6	19.5	18.4	17.7
NB43	436303	290796	Roadside	100.0	100.0	18.6	20.5	20.1	17.8	17.0
NB44	434298	290930	Roadside	100.0	100.0	22.5	24.9	24.0	21.6	21.0
NB45	435593	290728	Roadside	100.0	100.0	26.6	26.4	27.2	25.0	23.2
NB46	435135	290583	Roadside	100.0	100.0	13.8	14.1	15.2	12.3	12.3
NB47	435452	290087	Roadside	100.0	100.0	14.4	14.9	15.0	13.1	12.8
NB48	435066	290689	Roadside	100.0	100.0	18.3	19.8	18.5	16.9	17.3
NB49	435231	285236	Roadside	100.0	100.0	23.7	25.0	24.2	22.5	21.7
NB50	435201	285198	Roadside	100.0	100.0	25.3	27.0	25.3	24.8	25.0
NB51	435638	292357	Roadside	92.5	92.5	19.7	20.9	21.2	20.9	21.1

Diffusion Tube ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture 2024 (%) ⁽²⁾	2020	2021	2022	2023	2024
NB52	436147	290868	Roadside	100.0	25.0	26.2	26.6	26.6	24.2	20.3
NB53	434846	284736	Roadside	100.0	100.0	-	23.2	23.6	21.5	20.5
NB54	439049	292781	Roadside	90.3	90.3	-	-	-	12.5	11.9
NB55	435806	291733	Roadside	88.9	67.7	-	-	-	-	28.7
NB56	435653	291727	Roadside	55.5	43.1	-	-	-	-	30.8
NB57	435455	291748	Roadside	100.0	75.0	-	-	-	-	22.8
NB58	435287	291783	Roadside	100.0	75.0	-	-	-	-	21.6

- ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.
- ☑ Diffusion tube data has been bias adjusted.
- Reported concentrations are those at the location of the monitoring site (bias adjusted and annualised, as required), i.e. prior to any fall-off with distance correction.

Notes:

The annual mean concentrations are presented as μg/m³.

Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.

NO₂ annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

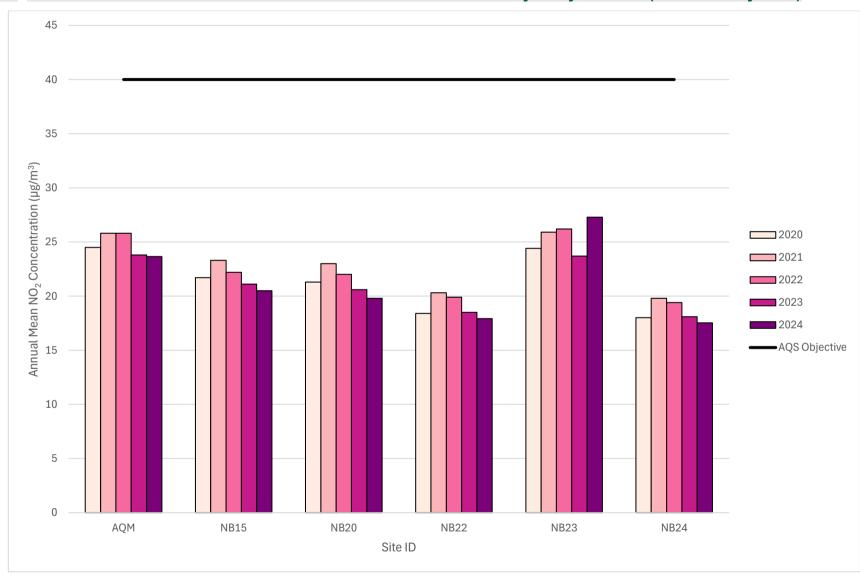


Figure A.1 – Trends in Annual Mean NO₂ Concentrations - Leicester Road Gyratory AQMA 1 (Revoked May 2025)

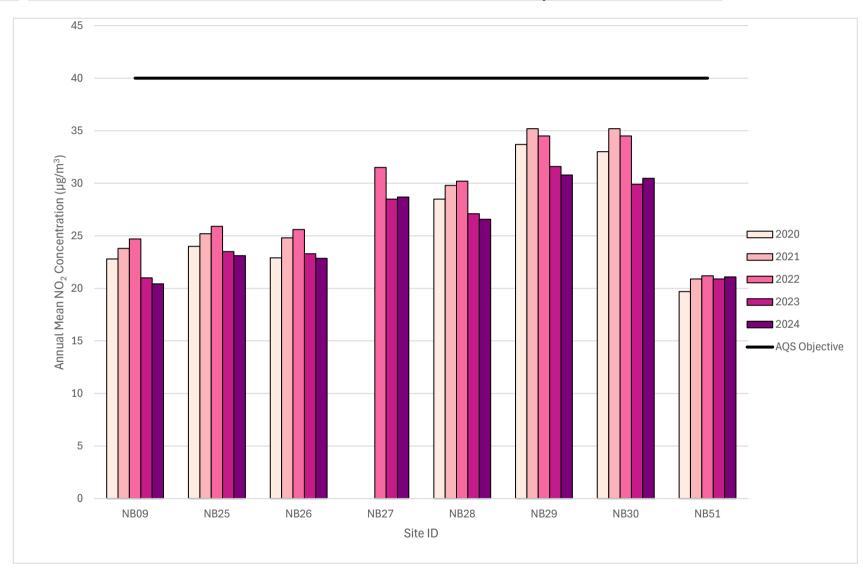


Figure A.2 – Trends in Annual Mean NO₂ Concentrations – Midland Road / Corporation Street AQMA 2

Figure A.3 – Trends in Annual Mean NO₂ Concentrations – Outside of AQMAs: Nuneaton

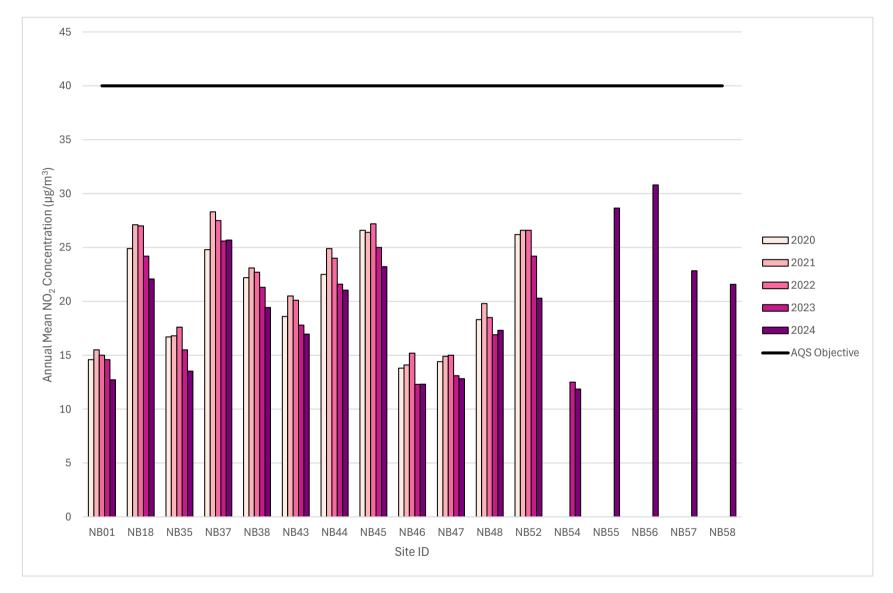
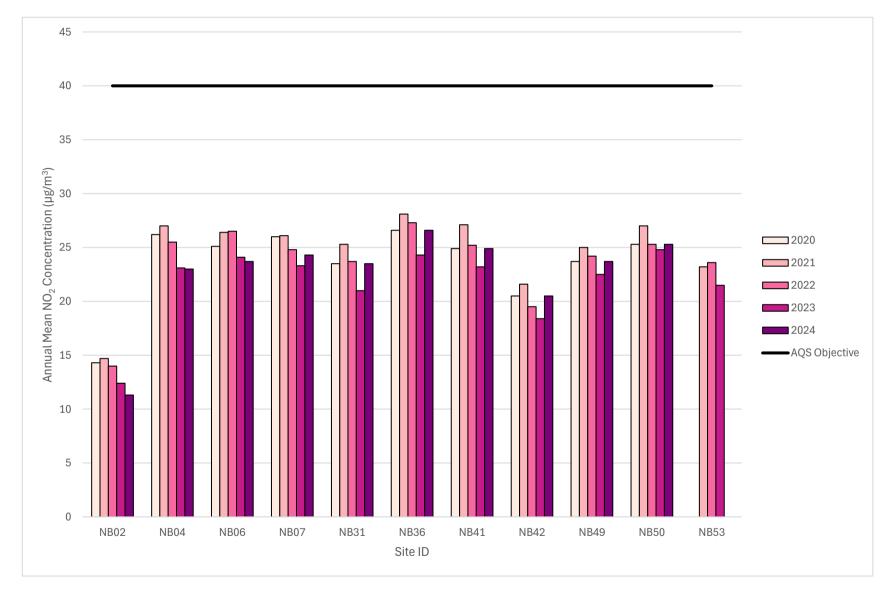



Figure A.4 – Trends in Annual Mean NO₂ Concentrations – Outside of AQMAs: Bedworth

Appendix B: Full Monthly Diffusion Tube Results for 2024

Table B.1 - NO₂ 2024 Diffusion Tube Results (µg/m³)

DT ID	X OS Grid Ref	Y OS Grid Ref (Northing)			Mar		May		Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted (0.84)	Annual Mean: Distance Corrected to	Comment
	, oi	`															Nearest Exposure	
AQM	436844	292251	30.9	34.2		25.2	28.6	25.1		25.3	23.4	28.6	33.2	27.0	28.2	23.7		Missing tube in March & July.
NB01	435969	291303	22.2	19.2	14.9	12.1	11.8	9.1	11.4	10.3		17.9	22.2	15.7	15.2	12.7		Missing tube in September.
NB02	436427	287646	20.7	17.6	12.9	11.2	11.0	9.0	8.5	10.4	11.1	12.1	22.5	14.6	13.5	11.3		
NB04	435793	286545	34.1	32.2	27.9		24.6	22.5	23.3	23.0	25.5	27.5	33.4	27.6	27.4	23.0		Missing tube in April.
NB06	434313	285292	31.6	33.6	27.7	24.9	27.5	24.1	27.0	25.9	26.2	31.7	33.7	25.5	28.3	23.7		•
NB07	435345	286992	31.2	32.1	26.5	24.4	25.7		35.2		25.6	28.3	33.2	26.8	28.9	24.3		Missing tube in June & August.
NB09	435634	292280	29.7	29.8	25.2	21.1	23.8	17.4	17.8	17.2	21.3	29.6	34.2	24.8	24.3	20.4		_
NB15	436883	292302	32.2	30.0	26.1	23.1	20.3	19.8	21.0	19.2	17.5		30.4	28.7	24.4	20.5		Missing tube in October
NB18	436525	291863	36.0	33.4	27.5										32.3	22.1		Site discontinued from April due to being located away from residential properties and below objective relocated.
NB20	436604	292202	29.3	28.2	25.4	20.1	23.3	19.4	19.4	20.1	21.2	23.9	28.5	24.0	23.6	19.8		
NB22	436810	292306	26.1	27.6	21.9	16.8	18.3	16.1	18.6	18.1	17.3	25.1	28.0	22.1	21.3	17.9		
NB23	436841	292280	51.8	32.5	26.4		47.9	28.9	27.8	26.5	23.7	28.2	33.2	30.3	32.5	27.3		April result deemed erroneous - concentration below 1 µg/m³.
NB24	436812	292196	27.5	24.9	17.3	19.2	18.4	17.4	16.9	16.6	20.7	22.3	27.0	22.4	20.9	17.5		
NB25	435814	292274	31.2	31.5	27.6	25.4	22.7	23.4	27.5	26.4	21.7	30.8	34.4	27.7	27.5	23.1		
NB26	435759	292311	31.9	29.2	25.5	25.8	29.2	24.3	23.2	20.7	29.9	29.3	33.3	24.4	27.2	22.9		
NB27	435950	292113	36.3	38.9	31.3	32.4		31.6	34.1	32.6	32.8	35.2	38.8	31.8	34.2	28.7		Missing tube in May.
NB28	435893	292205	34.2	37.9	32.7	29.5	29.9	28.8	30.6	29.8	25.6	31.7	37.9	31.1	31.6	26.6		
NB29	435626	292343	36.7	46.5	36.0	37.1	34.9	37.0	35.3	32.9	31.2	36.1	43.0	33.1	36.7	30.8		

LAQM Annual Status Report 2025

DT ID	Grid Ref	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted (0.84)	Annual Mean: Distance Corrected to Nearest Exposure	Comment
NB30	435554	292378	37.7	43.2	38.1	35.6		36.1	35.5	33.6	24.9	42.1	41.6	30.8	36.3	30.5		Missing tube in May.
NB31	435146	284563	30.5	25.4	22.4	22.8	24.1	20.2	20.9	19.1	26.0	26.3	30.5	23.1	24.3	20.4		,
NB35	439268	293457	21.5	22.3	18.0	14.1	15.0	13.2	13.8	14.0	13.1			16.2	16.1	13.5		Missing tube in October and November.
NB36	435217	285246	32.8	33.0	29.1	25.1	24.1	23.6	23.3	23.3	24.5	33.8	32.4	26.4	27.6	23.2		
NB37	435051	291594	35.9	32.8	27.2		43.7	26.7	25.4	22.8	29.5	28.8	34.5	28.9	30.6	25.7		April result deemed erroneous - concentration below 1 µg/m³.
NB38	437198	290732	29.3	28.7	22.9	21.7									25.6	19.4		Site discontinued due to being removed by homeowner and consistently low concentrations.
NB41	435619	287042	33.0	31.7		24.6	26.5	22.1	22.5	21.0	30.1	28.2	34.5	25.8	27.3	22.9		Missing tube in March.
NB42	435655	287135	26.2	29.0	22.6										25.9	17.7		Site discontinued due to consistently low concentrations.
NB43	436303	290796	26.3	25.5	20.5	18.2	19.9	14.4	16.7	14.8	19.4	20.9	24.9	20.9	20.2	17.0		
NB44	434298	290930	28.7	25.9	23.5	22.5	26.3	20.1	20.4	21.2	26.9	28.4	32.9	23.9	25.0	21.0		
NB45	435593	290728	35.8	34.1	30.3	25.6	25.2	21.1	25.4	24.9	22.4	28.9	32.4	25.5	27.6	23.2		
NB46	435135	290583	19.0	16.3	13.3	10.8	12.9	8.9	10.9	11.7	15.6	19.4	22.1	15.0	14.7	12.3		
NB47	435452	290087	21.8	16.9	13.3	11.9	11.9	9.6	12.3	11.6	15.8	18.6	22.8	16.8	15.3	12.8		
NB48	435066	290689	24.3	22.8	19.6	17.4	18.4	16.8	19.9	21.2	17.9	21.2	27.3	20.6	20.6	17.3		
NB49	435231	285236	31.4	31.7	25.5	22.3	24.0	22.5	23.6	22.5	22.2	29.4	31.3	23.1	25.8	21.7		
NB50	435201	285198	34.5	35.5	29.0	28.0	27.8	27.2	25.7	25.1	26.2	34.5	36.8	26.2	29.7	25.0		
NB51	435638	292357	27.6	29.1	26.3	22.3	22.0		35.5	18.7	20.6	20.4	30.7	23.0	25.1	21.1		June result deemed erroneous - concentration below 1 µg/m³.
NB52	436147	290868	29.1	31.5	28.5										29.7	20.3		Site discontinued due to low concentrations.

LAQM Annual Status Report 2025

DT ID	X OS Grid Ref (Easting)	Y OS Grid Ref (Northing)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Mean: Raw Data	Annual Mean: Annualised and Bias Adjusted (0.84)	Annual Mean: Distance Corrected to Nearest Exposure	Comment
NB53	434846	284736	31.0	30.1	27.7	22.3	24.2	17.8	20.1	17.7	21.6	25.6	30.8	23.8	24.4	20.5		
NB54	439049	292781	21.2	17.3	12.7	11.4	13.1	10.5	11.1	10.9	12.6		18.6	16.2	14.1	11.9		Missing tube in October.
NB55	435806	291733					26.8	27.1	28.8	32.4	31.1	37.9	43.4	30.8	32.3	28.7		New site added during 2024.
NB56	435653	291727				30.3	32.2			29.2	35.8	34.4			32.4	30.8		New site added during 2024.
NB57	435455	291748				23.9	28.1	23.1	22.9	23.2	30.8	32.7	33.8	26.3	27.2	22.8		New site added during 2024.
NB58	435287	291783				25.4	26.9	23.1	24.7	21.6	25.7	27.1	33.0	23.6	25.7	21.6		New site added during 2024.

- ☑ All erroneous data has been removed from the NO₂ diffusion tube dataset presented in Table B.1.
- ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22.
- ☐ Local bias adjustment factor used.
- ☑ National bias adjustment factor used.
- **☑** Where applicable, data has been distance corrected for relevant exposure in the final column.
- **⋈** NBBC confirm that all 2024 diffusion tube data has been uploaded to the Diffusion Tube Data Entry System.

Notes:

Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.

NO₂ annual means exceeding 60μg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

See Appendix C for details on bias adjustment and annualisation.

LAQM Annual Status Report 2025

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

New or Changed Sources Identified Within Nuneaton and Bedworth Borough Council During 2024

The following planning applications within the Nuneaton and Bedworth Borough Council area were received in 2024 and identified to have the potential to impact on air quality in the district. Table C.1 details a list of planning applications which were commented on by the Environmental Health Department in terms of air quality.

Table C.1 – Planning Applications with Air Quality Conditions in 2024

Date consultation received by Environmental Protection	Location	Details	Planning Application Number
21/02/2024	Site 39a003: part of Judkins, -Tuttle Hill, Nuneaton, Warwickshire	Outline application for residential development for up to 400 new dwellings and associated infrastructure. Damage Costs calculation submitted.	40102
21/03/2024	Site 51A025: Church Street (Library area)	Outline application for erection of a new Library, Business Centre and up to 65 residential dwellings.	39175

Additional Air Quality Works Undertaken by Nuneaton and Bedworth Borough Council During 2024

Nuneaton and Bedworth Borough Council has not completed any additional works within the reporting year of 2024.

QA/QC of Diffusion Tube Monitoring

During 2024, diffusion tubes were supplied and analysed by Gradko International using the 20% triethanolamine (TEA) in water preparation method.

Gradko International is a UKAS accredited laboratory and participates in the AIR-PT Scheme (a continuation of the Workplace Analysis Scheme for Proficiency (WASP)) for NO₂ diffusion tube analysis and the Annual Field Inter-Comparison Exercise. Strict performance criteria are required to be met by participating laboratories, ensuring reported

NO₂ data are of a high standard.From the most recent set of AIR-PT results (AR065, July – August 2024, and AR066, September – October 2024), Gradko scored 100% – the percentage score reflects the results deemed satisfactory based upon the z-score of ± 2. During 2024, all diffusion tubes were exposed and changed in adherence (±2 days) with the 2024 Defra Diffusion Tube Monitoring Calendar.

Diffusion Tube Annualisation

As per LAQM.TG(22), annualisation is required for any site which has a data capture of less than 75%, but greater than 25%. Annualisation was therefore required to be completed for six diffusion tube monitoring sites. The three closest continuous monitoring background locations with sufficient data capture which were selected to annualise the data were:

- Birmingham Ladywood
- Coventry Allesley
- Leamington Spa

These sites have a data capture of >85% and therefore could be used for annualisation.

Table C.1 presents the annualisation summary and is taken directly from the Diffusion Tube Data Processing Tool.

Table C.2 – Annualisation Summary (concentrations presented in μg/m³)

Site ID	Annualisation Factor Coventry Allesley	Annualisation Factor Leamington Spa	Annualisation Factor Birmingham Ladywood	Average Annualisation Factor	Raw Data Annual Mean	Annualised Annual Mean
NB18	0.7981	0.7862	0.8560	0.8134	32.3	26.3
NB38	0.8851	0.8743	0.9464	0.9019	25.6	23.1
NB42	0.7981	0.7862	0.8560	0.8134	25.9	21.1
NB52	0.7981	0.7862	0.8560	0.8134	29.7	24.2
NB55	1.0684	1.0734	1.0273	1.0564	32.3	34.1
NB56	1.1422	1.1722	1.0807	1.1317	32.4	36.7

Diffusion Tube Bias Adjustment Factors

The diffusion tube data presented within the 2025 ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG22 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor

based on the comparison of diffusion tube results with data taken from NO_x/NO_2 continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method (Figure C.1).

Nuneaton and Bedworth Borough Council have applied a national bias adjustment factor of 0.84 to the 2024 monitoring data. A summary of bias adjustment factors used by Nuneaton and Bedworth Borough Council over the past five years is presented in Table C.3 – Bias Adjustment Factor.

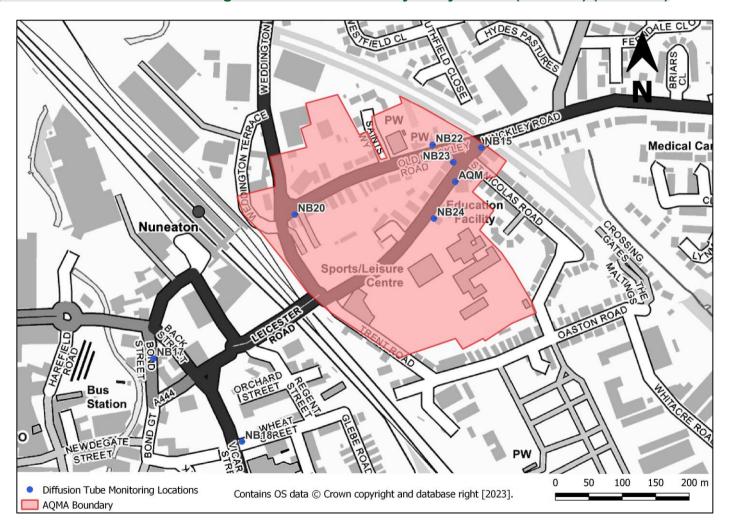
Spreadsheet Version Number: 06/25 National Diffusion Tube Bias Adjustment Factor Spreadsheet follow the steps below in the correct order to show the results of relevant co-location students Data only apply to tubes exposed monthly and are not suitable for correcting individual short-term monitoring periods at the end of September 2025 Thenever presenting adjusted data, you should state the adjustment factor used and the version of the spreadsheet his spreadsheet will be updated every few months: the factors may therefore be subject to change. This should not discourage their im The LAQM Helpdesk is operated on behalf of Defra and the Devolved Administrations by Bureau Veritas, in conjunction with contract partners AECOM and the National Physical Laboratory. Spreadsheet maintained by the National Physical Laboratory, Original Step 2: Step 3: Select a Preparation Select the Laboratory that Analyses Your Tubes Where there is more than one study, use the overall factor shown in blue at the foot of the final column Analysed By Year Adjustme Local Authority Bias (B) Type Factor (A) (Cm/Dm) (Dm) (µg/m³) "T 20% TEA in water UV Belfast City Council 19.9% Gradko 2024 10 24 20 G 0.83 20% TEA in water 20% TEA in water R Belfast City Council
R Belfast City Council 0.78 0.88 0.80 2024 2024 28.8% 13.9% Gradko 20% TEA in water 2024 R Belfast City Council 25.5% 20% TEA in water R Blackburn With Darwen Bo 32.9% 0.75 R Bath & North East Somer.
R Cambridge City Council
UB Plymouth City Council 20% TEA in water 20% TEA in water 0.78 Gradko 2024 19 28.5% Gradko 20% TEA in water 2024 13.8% 0.88 R Plymouth City Council
R Monmouthshire County Council
KS Marylebone Road Intercomparison 20% TEA in water 33.4% 19.4% 20% TEA in water 2024 Gradko 20% TEA in water 2024 16.1% R Lisburn & Castlereagh City Council
R Ards And North Down Borough Council
R Eastleigh Borough Council Gradko 20% TEA in water 27.8% 0.78 0.69 0.83 20% TEA in water Gradko 2024 29 24 20.3% 20% TEA in water 2024 UB Eastleigh Borough Council 12.4% 0.89 R Eastleigh Borough Council
R Gateshead Council
R Gateshead Council 20% TEA in water 0.89 0.88 0.84 20% TEA in water Gradko 2024 Gradko 20% TEA in water 2024 19.7% 20% TEA in water R Gateshead Council 21.7% 0.82 0.84 1.06 20% TEA in wate 20% TEA in water Gradko 2024 R Gateshead Council
R Brighton & Hove City Council 28 30 -6.0% 20% TEA in water 2024 26.3% 0.79 20% TEA in water 20% TEA in water R Liverpool City Council
KS Liverpool City Council 0.74 0.91 35.7% 10.2% Gradko 2024 Gradko 20% TEA in water 2024 R Nottingham City Council 10 12.2% 0.89 20% TEA in water R Wychavon District Council 10 14.7% 20% TEA in water R Cheshire West And Chester Gradko 20% TEA in water 2024 33 21.7% 0.82 20% TEA in water R Cheshire West And Chester 0.89 R The Highland Council
R The Highland Council
Overall Factor³ (31 studies)

Figure C.1 – Bias Adjustment Factor Spreadsheet (06/25)

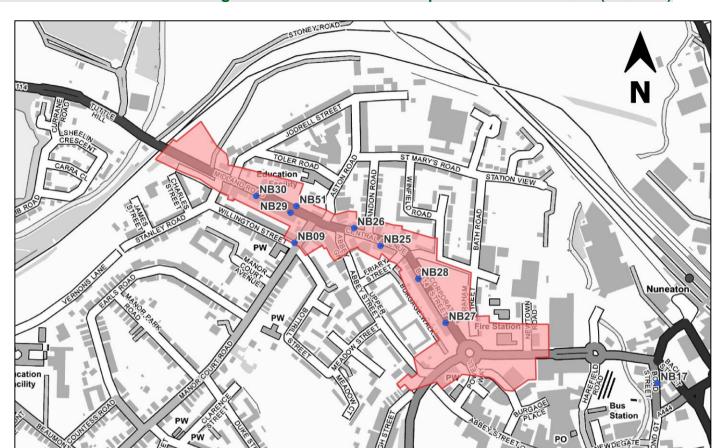
Table C.3 – Bias Adjustment Factor

Monitoring Year	Local or National	If National, Version of National Spreadsheet	Adjustment Factor
2024	National	06/25	0.84
2023	National	03/24	0.81
2022	National	03/23	0.83
2021	National	03/22	0.84

Monitoring Year	Local or National	If National, Version of National Spreadsheet	Adjustment Factor
2020	National	06/21	0.81


NO₂ Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tool/NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO₂ concentrations corrected for distance are presented in Table B.1.


No diffusion tube NO₂ monitoring locations within Nuneaton and Bedworth Borough Council required distance correction during 2024.

Appendix D: Map(s) of Monitoring Locations and AQMAs

Figure D.2 – Map of Non-Automatic Monitoring Site Leicester Road Gyratory AQMA (AQMA 1) (Revoked)

100 150 200 m

Contains OS data © Crown copyright and database right [2023].

Figure D.3 – Map of Non-Automatic Monitoring Site – Midland Road / Corporation Street AQMA (AQMA 2)

Diffusion Tube Monitoring Locations

AQMA Boundary

Figure D.4 – Map of Non-Automatic Monitoring Site – South Nuneaton

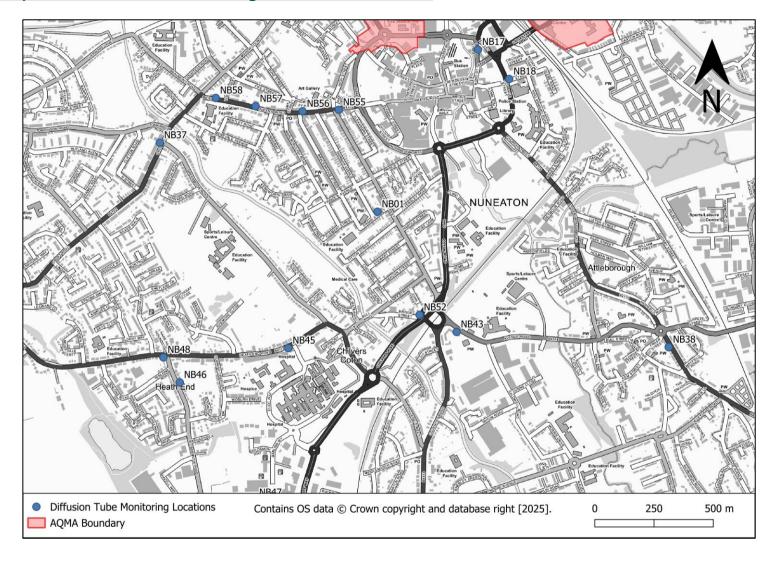


Figure D.5 – Map of Non-Automatic Monitoring Site – North Nuneaton

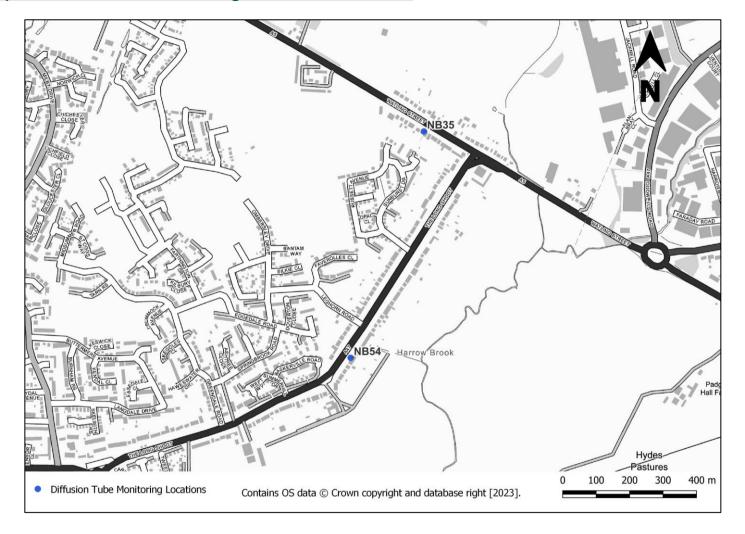
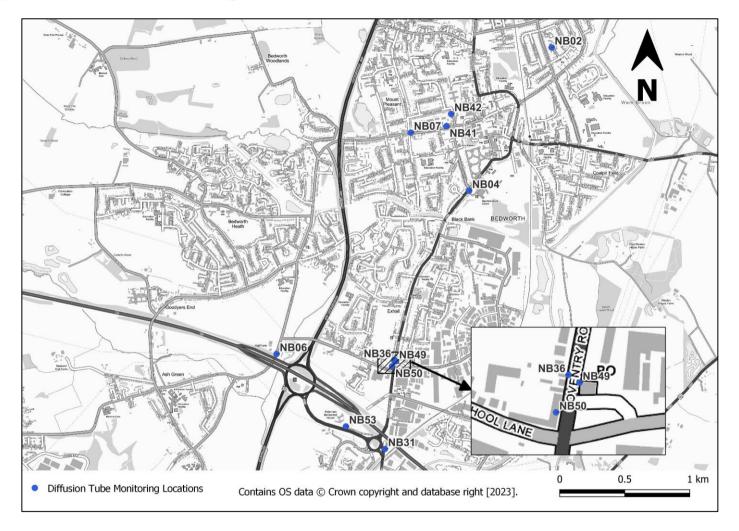



Figure D.6 - Map of Non-Automatic Monitoring Site - Bedworth

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England⁶

Pollutant	Air Quality Objective: Concentration	Air Quality Objective: Measured as
Nitrogen Dioxide (NO ₂)	200μg/m³ not to be exceeded more than 18 times a year	1-hour mean
Nitrogen Dioxide (NO ₂)	40μg/m³	Annual mean
Particulate Matter (PM ₁₀)	50μg/m³, not to be exceeded more than 35 times a year	24-hour mean
Particulate Matter (PM ₁₀)	40μg/m³	Annual mean
Sulphur Dioxide (SO ₂)	350μg/m³, not to be exceeded more than 24 times a year	1-hour mean
Sulphur Dioxide (SO ₂)	125μg/m³, not to be exceeded more than 3 times a year	24-hour mean
Sulphur Dioxide (SO ₂)	266μg/m³, not to be exceeded more than 35 times a year	15-minute mean

_

⁶ The units are in microgrammes of pollutant per cubic metre of air (μg/m³).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
ASR	Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10μm or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide

References

- Local Air Quality Management Technical Guidance LAQM.TG22. August 2022.
 Published by Defra in partnership with the Scottish Government, Welsh Assembly
 Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG22. August 2022.
 Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Chemical hazards and poisons report: Issue 28. June 2022. Published by UK Health Security Agency
- Air Quality Strategy Framework for Local Authority Delivery. August 2023.
 Published by Defra.
- Defra. Environmental Improvement Plan 2023, January 2023
- DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018
- Defra. <u>Background Maps | LAQM</u>
- Public Health Outcomes Framework | Fingertips | Department of Health and Social
 Care